
ARTICLE IN PRESS 

JID: MICPRO [m5G; July 9, 2016;12:2 ] 

Microprocessors and Microsystems 0 0 0 (2016) 1–13 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

Efficient resource sharing algorithm for physical register file in 

simultaneous multi-threading processors 

Yilin Zhang 

a , ∗, Wei-Ming Lin 

b 

a Advanced Micro Devices, Inc., Austin, TX, 78735, United States 
b Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249-0669, United States 

a r t i c l e i n f o 

Article history: 

Received 23 September 2015 

Revised 10 February 2016 

Accepted 2 June 2016 

Available online xxx 

Keywords: 

Simultaneous multi-threading 

Superscalar 

Physical register file 

Register renaming 

IPC 

a b s t r a c t 

Simultaneous Multi-Threading (SMT) processors increase performance by allowing concurrent execution 

of multiple independent threads with sharing of key datapath components and better utilization of the 

resources. An SMT processor usually maintains a shared register file to accommodate multiple threads for 

register renaming. By supporting inter-thread sharing of the physical registers, an SMT system processor 

can reduce the number of registers that would have been required in multiple superscalar processors 

while achieving a comparable throughput. However, congested shared resources due to slower threads 

can easily lead to inefficient usage of the resources and thus an undesirable performance outcome. In 

this paper, we propose an allocation algorithm at the architectural level for a better utilization of the 

shared register file. We show that, by limiting the number of the physical register entries each thread is 

allowed to occupy at any given time, the overall system throughput is enhanced by a substantial margin. 

An improvement in IPC of up to 44.6% and 32.7% is observed when the proposed technique is applied to a 

4-threaded and a 6-threaded SMT system, respectively. Furthermore, a 4-threaded system with a physical 

register file of 160 entries can deliver a performance comparable to that of a default system with 256 

entries, reflecting a resource saving of 37.5%. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Noting the resource utilization deficiencies in the traditional 

superscalar processors, Simultaneous Multi-Threading (SMT) offers 

an improved mechanism to enhance overall system performance 

by allowing concurrent execution of instructions from different 

threads. The most common characteristic of SMT processors is the 

sharing of key datapath components among multiple independent 

threads. Essentially SMT improves the overall performance by ex- 

ploiting Thread-Level Parallelism (TLP) among threads to overcome 

the limits of Instruction-Level Parallelism (ILP) present in a sin- 

gle thread [1 , 2] . Subsequently, due to the sharing of resources, the 

amount of hardware required in an SMT system can be signifi- 

cantly less than that from employing multiple copies of superscalar 

processors while achieving a similar throughput. 

There have been numerous research efforts targeted in im- 

proving the efficiency of the resource allocation and utilization 

in SMT systems. Some of them improve the fairness of the re- 

source allocation among threads by modifying the fetch policy. For 

∗ Corresponding author. 

E-mail addresses: zhangyilin.bupt@gmail.com , yilin.zhang@amd.com (Y. Zhang), 

weiming.lin@utsa.edu (W.-M. Lin). 

example, ICOUNT [3] assigns a higher fetching priority to a thread 

with fewer instructions in pre-issue stages; STALL and FLUSH 

[4] adopts a fetch policy to address issues from L2 cache misses; a 

dynamical fetch policy DCRA presented in [5] is a technique based 

on memory performance of each thread to exploit parallelism 

beyond stalled memory operations; PEEP [6] controls the fetch 

unit by exploiting the predictability of memory dependencies; 

SAFE-T in [7] and a speculation control technique in [8] both give 

higher fetching priorities to threads with higher branch prediction 

accuracy. 

Note that, in an SMT system, the resources shared among 

threads normally include physical register file, various machine 

bandwidths (e.g., inter-stage bandwidth, read/write ports for reg- 

ister file and memory, etc.), inter-stage buffers (e.g., Issue Queue 

(IQ)), functional units, write buffer, etc. In some processors, In- 

struction Fetch Queue (IFQ) and Re -Order Buffer (ROB) are also 

shared among threads. Previous research works have examined the 

allocation of the shared buffers in the pipeline in order to achieve 

a more efficient utilization of the shared resources. For example, 

APRA dynamically assigns resources (IFQ, IQ and ROB) to threads 

according to changes of threads’ behavior [9] . Hill-Climbing [10] is 

a learning-based algorithm that uses performance feedback to par- 

tition the shared hardware resources in the pipeline including IFQ, 

physical registers, ROB and IQ. In [11] , a write buffer occupancy 

http://dx.doi.org/10.1016/j.micpro.2016.06.002 

0141-9331/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: Y. Zhang, W.-M. Lin, Efficient resource sharing algorithm for physical register file in simultaneous multi- 

threading processors, Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.06.002 

http://dx.doi.org/10.1016/j.micpro.2016.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
mailto:zhangyilin.bupt@gmail.com
mailto:yilin.zhang@amd.com
mailto:weiming.lin@utsa.edu
http://dx.doi.org/10.1016/j.micpro.2016.06.002
http://dx.doi.org/10.1016/j.micpro.2016.06.002


2 Y. Zhang, W.-M. Lin / Microprocessors and Microsystems 0 0 0 (2016) 1–13 

ARTICLE IN PRESS 

JID: MICPRO [m5G; July 9, 2016;12:2 ] 

SMTTLP

shared resources
among threads

longer occupancy of 

more rename 
registers needed

even more rename
registers needed

rename register
by a thread

concurrent multi-
thread processing

long occupancy of

cache miss, long
data dependency, etc.

rename register
by an instruction

longer per-intruction
execution latency

Fig. 1. Renaming register requirement in an SMT versus a single-threaded system. 

capping technique is proposed for an efficient utilization on the 

shared write buffer. Some other research results have enhanced the 

overall performance by improving the utilization of IQ [12–15] . 

In this paper, we focus on the utilization of the physical regis- 

ter file which may significantly impact SMT’s throughput and cost- 

effectiveness. A physical register file is used by the CPU for real- 

time renaming to resolve register name dependencies. A rename 

register is allocated to a destination register at the rename stage 

of an instruction and will not be released (deallocated) until the 

next instruction with the same destination register is safely com- 

mitted. For a single-threaded superscalar CPU, the size of rename 

register file required depends on the prevalence of name depen- 

dencies within a time frame of program execution and the degree 

of ILP present to support concurrent processing. Usually neither is 

high enough to call for a very large size of register file to prevent 

the rename stage from becoming the bottleneck. That is, a stalled 

instruction (due to a cache miss or other reasons) occupying a re- 

naming register will most likely stop most of subsequent instruc- 

tions from proceeding even they are not delayed at the rename 

stage due the lack of renaming registers. 

On the other hand, in a typical SMT system to take advantage 

of the TLP newly present, a much larger physical register file is 

required in order to accommodate register renaming for multiple 

threads to prevent a bottleneck at the rename stage. Fig. 1 briefly 

illustrates the reasoning for this requirement compared to a single- 

threaded system. Multiple threads running in an SMT system shar- 

ing several key resource components would no doubt lead to a 

longer expected latency per instruction, which in turn prolong oc- 

cupancy duration of a rename register by an instruction. This rea- 

son itself would demand more rename registers per thread than 

the single-threaded system. Another factor comes from the real- 

time changing behavior of competing threads and the potentially 

long occupancy duration of a register from the time it is allocated 

to when it is released. That is, a renaming register occupied by a 

stalled instruction of a thread means the loss of a potential useful 

register that could have been used by another thread. This leads to 

an even higher demand for renaming registers. Employing a large 

register file may not only be cost inhibitive but could also lead 

to longer access latency and excessive area/power consumption. In 

addition, such a choice is exactly contradictory to the underlying 

design philosophy of an SMT in sharing resources that are sup- 

posed to be less than that from multiple copies of single-threaded 

systems. Thus, effectively managing a reasonable-sized register file 

in an SMT system is a must to achieve a desirable balance between 

throughput and cost. 

There are several research results related to organization and 

utilization of the register file. In [16] , the utilization of physical 

register file is increased by expediting the deallocation process of 

the “dead” registers. Although a very significant improvement in 

performance is reported, the proposed early deallocation process 

itself is not a “stand-alone” hardware modification but instead can 

only be achieved through the support of an intelligent compiler 

and operating system. Another technique proposed in [17] instead 

tries to delay the register allocation until the complete stage (ver- 

sus the rename stage) so as to reduce its occupancy latency. How- 

ever, such a delayed allocation could easily lead to a deadlock since 

such a not-yet-allocated instruction may not find a free physical 

register to commit to when it is completed. Extra hardware over- 

head and modifications to other stages of the pipeline are needed 

to mend this problem. 

To better solve this problem with a stand-alone approach with- 

out adding much hardware requirement, we propose a very intu- 

itive technique by limiting the maximal number of physical reg- 

isters a thread is allowed to occupy at any moment. We believe 

that, if this cap value is properly selected, slower threads will no 

longer clog up the register file impeding faster threads’ progress 

for higher throughput. The technique is at the architectural level 

and thus requires no modification to the operation system or the 

compiler. In addition, it is a completely stand-alone process at the 

renaming stage which does not require any modification to other 

stages in the pipeline. This technique can therefore be easily com- 

bined with any other advanced techniques designed for another 

stage for additive performance gain without having to worry much 

about tampering existing benefits from each other. 

As our simulation results show, the proposed technique im- 

proves IPC (Instruction per Clock Cycle) by as high as 44.6% and 

32.7% in 4-threaded and 6-threaded systems respectively. It also 

enhances Harmonic IPC (an indicator of execution fairness) by 

42.6% and 32.7% respectively. From the resource utilization’s per- 

spective, with the proposed technique, the system is able to de- 

liver the same throughput with a smaller number of registers. For 

example, a 4-threaded system with a physical register file of 160 

entries can deliver a performance comparable to that of a default 

system with 256 entries, reflecting a resource saving of 37.5%. 

The rest of this paper continues with a brief description on reg- 

ister renaming and how it has been implemented in the litera- 

ture. Section 3 is then devoted to the introduction of simulation 

environment adopted by this research including the metrics used. 

Motivation of this research is clearly illustrated in Section 4 giv- 

ing several key analyses of the systems’ performance with respect 

to the register file. The proposed technique is described in Section 

5 followed by the complete simulation results in Section 6 . It is 

then wrapped up by several concluding remarks in the last section. 

2. Register renaming 

Register renaming is a technique used to avoid unnecessary 

serialization of program operations imposed due to the reuse 

of the registers by these operations. It is a key issue for the 

out-of-order execution and is extensively used in modern pro- 

cessors. Register renaming eliminates name dependencies (anti- 

and output-dependencies) on architectural registers by assigning 

Please cite this article as: Y. Zhang, W.-M. Lin, Efficient resource sharing algorithm for physical register file in simultaneous multi- 

threading processors, Microprocessors and Microsystems (2016), http://dx.doi.org/10.1016/j.micpro.2016.06.002 

http://dx.doi.org/10.1016/j.micpro.2016.06.002


Download English Version:

https://daneshyari.com/en/article/4956893

Download Persian Version:

https://daneshyari.com/article/4956893

Daneshyari.com

https://daneshyari.com/en/article/4956893
https://daneshyari.com/article/4956893
https://daneshyari.com

