
Microprocessors and Microsystems 45 (2016) 324–338

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A new countermeasure against side-channel attacks based on

hardware-software co-design

Ruben Lumbiarres-Lopez

a , Mariano Lopez-Garcia

a , ∗, Enrique Canto-Navarro

b

a 1-Electronic Engineering, Universidad Politècnica de Cataluña, Avda. Victor Balaguer, 08800, Vilanova i la Geltrú, Spain
b 2-Enrique Cantó-Navarro, Universitat Rovira i Virgili, Automatics and Electronic Engineering, Avda. Països Catalans, Tarragona, Spain

a r t i c l e i n f o

Article history:

Received 18 December 2015

Revised 20 April 2016

Accepted 17 June 2016

Available online 5 July 2016

Keywords:

Countermeasure

Side-channel analysis

AES algorithm and hardware-software

co-design

a b s t r a c t

This paper aims at presenting a new countermeasure against Side-Channel Analysis (SCA) attacks, whose

implementation is based on a hardware-software co-design. The hardware architecture consists of a mi-

croprocessor, which executes the algorithm using a false key, and a coprocessor that performs several

operations that are necessary to retrieve the original text that was encrypted with the real key. The co-

processor hardly affects the power consumption of the device, so that any classical attack based on such

power consumption would reveal a false key. Additionally, as the operations carried out by the copro-

cessor are performed in parallel with the microprocessor, the execution time devoted for encrypting a

specific text is not affected by the proposed countermeasure. In order to verify the correctness of our

proposal, the system was implemented on a Virtex 5 FPGA. Different SCA attacks were performed on

several functions of AES algorithm. Experimental results show in all cases that the system is effectively

protected by revealing a false encryption key.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since Kocher et al. [1] , in the late 1990s, demonstrated the vul-

nerabilities of cryptographic devices, Side Channel Analysis (SCA)

attacks have become the most significant threat related to the se-

curity of cryptographic algorithms. These attacks base their suc-

cess on analyzing the leakage information that is mainly observ-

able through the power consumption or the electromagnetic ra-

diation (EM) emitted by a hardware device. The attack is feasible

because either of these two quantities is related to the data being

processed by the device, which depends on the value of the cryp-

tographic key.

Once such weakness was revealed, part of the scientific com-

munity oriented their effort s in proposing countermeasures that

provide resistance against SCA attacks. Although with some differ-

ences, almost all proposed solutions attempt to design systems in

which the power consumption (or the EM) is independent of the

data that they process. This objective is achieved either by provid-

ing systems featured with random power consumption or building

devices in which such power is constant in each clock cycle. The

latter approach, known as hiding, has usually been implemented

at cell level based on the Dual-Rail Precharge (DRP) logic style.

∗ Corresponding author.

E-mail address: mariano.lopez@upc.edu (M. Lopez-Garcia).

This style is tailored with signals represented by two complemen-

tary wires, in such a way that in every clock cycle only one switch

per cycle is produced. Thus, during the pre-charge phase, both the

direct and complementary wires are charged,whereas in the eval-

uation phase only one of them is discharged. Among the more

significant proposals of this logic style can be found Sense Am-

plifier Based Logic (SABL) [2] and Wave Dynamic Differential Logic

(WDDL) [3] . However, the main drawback of such DRP logic styles

is that their success depends on the perfect balancing between

the capacitive loads related to the complementary wires that form

the overall circuit. This requirement implies including some con-

straints on the placement and routing steps. In contrast, the for-

mer approach, known as masking, has been implemented at both

algorithm and cell levels. At cell level, the most relevant propos-

als are Random Switching Logic (RSL) [4] , Dual Random Switching

Logic (DRSL) [5] and Masked Dual-Rail Precharge Logic (MDPL) [6] .

Masking Boolean approaches base their resistance against SCA at-

tacks on concealing, by means of an exclusive OR operator, all in-

termediate values v with a random mask m . The masked values

v m

= (v � m) , which are actually being processed into the hard-

ware device, are statistically independent with respect to v , so

that the power consumption and the cryptographic key are com-

pletely uncorrelated. Thus, these logic styles are not affected by

the imbalance existing between the routing capacitances of com-

plementary wires. Furthermore, approaches based on hiding (i.e.,

SABL and WDDL) could be implemented in a smaller area than

http://dx.doi.org/10.1016/j.micpro.2016.06.009

0141-9331/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.micpro.2016.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.06.009&domain=pdf
mailto:mariano.lopez@upc.edu
http://dx.doi.org/10.1016/j.micpro.2016.06.009

R. Lumbiarres-Lopez et al. / Microprocessors and Microsystems 45 (2016) 324–338 325

the one needed by the masked logic styles (i.e., MPDL, RSL, DRSL).

Additionally, SABL, RSL and DRSL require designing specific cells

for their implementation, whereas WDDL or MDPL allow designing

such secure logic based on existing standard cells.

Moreover, it has been shown that in general the security of cell

level implementations could be compromised due to the effect of

the inter-wire capacitances [7] or the so-called early propagation

effect [8,9] . As these vulnerabilities became known, the previous

proposals were updated, including new measures that make sys-

tems more secure against most of these harmful effects. For in-

stance, the original MDPL, which inherently is a glitch-free logic

style based on majority-gates, was modified to support the early

propagation effect (iMDPL) [10] . Other examples of improved DPR

styles can be found in [11] and [12] . More recently, a new coun-

termeasure termed SecLib has been proposed [13] . The early eval-

uation is prevented by designing specific cells based on two stages

that avoid such effect. However, as stated by the authors, it also

increases the cost in terms of area, delay and power consumption.

Masking is a countermeasure that can be also implemented at

algorithm level. In [14] , the authors proposed an implementation

of the AES encryption algorithm using six independent masks. The

algorithm was solved on an 8-bit microcontroller leading to an

execution time twice that compared with the unmasked version.

There are also some proposals for implementing hiding counter-

measures on software. These approaches aim at introducing tem-

poral jitter in the sequence of operations performed by the micro-

processor. This way, the instant at which an effective attack might

be produced is distributed over time following an unknown prob-

ability distribution function (misalignment of power traces). Some

examples of these software countermeasures consist of introducing

dummy cycles [15] or a random variation on the execution orders

[16] .

Other different publications aim at introducing noise to reduce

the correlation between the processed data and the cryptographic

key. Following this idea an interesting approach was proposed in

[17] , in which a noise generator correlated with the data that is

being processed is included. However, the attack is only effective

when the target is the function correlated with the introduced

power noise. Additionally, the revealed key is not always the same

and it depends on the number of traces captured and used to per-

form the attack.

As mentioned above, SCA attacks based their success on ex-

ploiting the existing dependence between the processed data and

the power consumption (or EM). As data depend on the crypto-

graphic key, from a statistical point of view it means that there

exists a correlation between such a key and the consumed power.

Theoretically, only the correct key is able to produce a correla-

tion with a significant value, whereas the rest of the keys would

generate a value close to zero. Countermeasures based on hiding

or masking try to eliminate this correlation, in such a way that

any SCA attack, performed on any possible key, does not produce

any relevant result that could be distinguished among all others.

In other words, all correlations between power consumption and

guessed keys are equally likely and tend to zero.

The countermeasure proposed in this paper is completely dif-

ferent when compared with previous approaches. The mechanism

for protecting the system consists in revealing a false key when a

SCA attack is performed. This false key (or fake key) produces the

highest correlation coefficient between the data processed and the

power consumed by the hardware device. Thus, from the perspec-

tive of an attacker, the system behaves as an unprotected imple-

mentation that conceals the true key by producing a false posi-

tive. Note that, such implementation should be performed affect-

ing as little as possible the power consumption trace (in ampli-

tude and time) when compared with the original non-protected

system.

Although the proposed countermeasure, termed faking, could

be entirely implemented in software, the penalty on the execu-

tion time would be quite significant. In fact, including all addi-

tional calculations needed to conceal the real key, such execution

time is almost doubled when compared with the non-protected

version. Instead, the implementation presented in this paper is

based on a hardware/software co-design. The system consists of a

microprocessor which solves via software the classical Advanced

Encryption Standard (AES) 128-bit cryptographic algorithm, and a

coprocessor specifically designed for implementing the proposed

countermeasure. The proposed architecture is intended for appli-

cations in which the main task performed by the microprocessor

is to solve a specific processing from which a critical informa-

tion is obtained. The encryption is necessary for storing this con-

fidential data in an external device or for sending such informa-

tion through a non-secure channel. For instance, the microproces-

sor could be used for analyzing a fingerprint image from which a

confidential biometric feature is obtained and should be stored in

an external memory. Although is out the scope of this paper, in

applications where the encryption is the main task that should be

performed, a complete hardware-implementation would be more

suitable and faster. Regardless of the implementation chosen, hard-

ware, hardware-software or pure software, the level of security for

all of them is identical and only their features in terms of area and

speed are different.

This paper is organized into five sections. Section 2 presents

the fundamentals of the proposed countermeasure. The aim of

Section 3 is to describe the internal architecture of the coprocessor

and its main features. Section 4 presents the experimental results.

Finally, Section 5 presents the conclusions

2. Fundamentals

2.1. Introduction

The structure of the AES 128-bit encryption algorithm is rep-

resented in Fig. 1 As the figure shows, the algorithm consists of

four operations that are performed on a matrix of 16 bytes, termed

state, in different rounds: AddRoundKey (exclusive-OR), SubBytes,

ShiftRows and Mixcolumns . A general description about the prin-

ciples of this cipher, including such four operations, can be found

in [18,19] .

Although in the proposal presented by Kocher the cryptographic

key was found using the differential-of-means method, currently

the most extended statistical method employed for this purpose

is based on correlation [14] . This method consists of the following

steps:

(a) The encryption algorithm is executed M times using a set

of M different plain texts. For each one, a current trace is

captured and stored for its subsequent processing.

(b) It is quite usual to choose as points to be attacked (tar-

get) the output of one of the four operations (inputs of the

following points) involved in the AES algorithm, since their

result (state) is normally written in a memory or register,

which creates a distinguishable point at the captured power

trace.

(c) A theoretical power model, which represents the consump-

tion of the overall set of CMOS cells that form the cir-

cuit, should be chosen. Such a theoretical model is nor-

mally based on the Hamming distance (HD) or the Hamming

weight (HW), that represents the value of a set of bits v (t k)

related to the point to be attacked. Note that, if an interme-

diate value at instant (t k −1) is v (t k −1) , then

HD (v (t k)) = HW (v (t k −1) � v (t k)) (1)

Download English Version:

https://daneshyari.com/en/article/4956897

Download Persian Version:

https://daneshyari.com/article/4956897

Daneshyari.com

https://daneshyari.com/en/article/4956897
https://daneshyari.com/article/4956897
https://daneshyari.com

