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ABSTRACT

When driving a vehicle along a given route, several objectives such as the traveling time and the fuel
consumption have to be considered. This can be viewed as an optimization problem and solved with
the appropriate optimization algorithms. The existing optimization algorithms mostly combine objec-
tives into a weighted-sum cost function and solve the corresponding single-objective problem. Using a
multiobjective approach should be, in principle, advantageous, since it enables better exploration of the
multiobjective search space, however, no results about the optimization of driving with this approach
have been reported yet. To test the multiobjective approach, we designed a two-level Multiobjective
Optimization algorithm for discovering Driving Strategies (MODS). It finds a set of nondominated driving
strategies with respect to two conflicting objectives: the traveling time and the fuel consumption. The
lower-level algorithm is based on a deterministic breadth-first search and nondominated sorting, and
searches for nondominated driving strategies. The upper-level algorithm is an evolutionary algorithm
that optimizes the input parameters for the lower-level algorithm. The MODS algorithm was tested on
data from real-world routes and compared with the existing single-objective algorithms for discovering
driving strategies. The results show that the presented algorithm, on average, significantly outperforms

the existing algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Driving a vehicle along a given route is a complex process that
consists of a series of control actions that are applied to the vehicle
by taking into account the vehicle and route states. A set of connec-
tions between the states and control actions is a driving strategy.
The cost of driving by applying a driving strategy mainly depends
on the fuel consumption; however, when the fuel consumption
is reduced, the traveling time increases. Consequently, the two
objectives, i.e., the traveling time and the fuel consumption, are
in conflict with each other. Improving one of the objectives deteri-
orates the other. Moreover, the extreme reduction of one objective
leads to an unacceptable value for the other objective. Therefore,
both objectives have to be taken into account simultaneously when
constructing a driving strategy.

The existing techniques for discovering driving strategies
use single-objective optimization methods in combination with

* Corresponding author. Tel.: +386 1 477 3393.

E-mail addresses: erik.dovgan@ijs.si (E. Dovgan), matija.javorski@fs.uni-lj.si
(M. Javorski), tea.tusar@ijs.si (T. TuSar), matjaz.gams@ijs.si (M. Gams),
bogdan.filipic@ijs.si (B. Filipic).

URL: http://dis.ijs.si/Erik/ (E. Dovgan).

1568-4946/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.as0c.2013.11.014

predictive control [1]. They can be divided into two groups:
model-based approaches and black-box approaches. Model-based
approaches require a knowledge about the applied vehicle model
and are usually analytical, while black-box approaches use vehicle
models without any knowledge of vehicle operation and are
usually numerical. The selection among them mainly depends on
whether the knowledge about the vehicle model is available or not,
and whether a black-box simulator is available or not. However,
the black-box approach is preferable from the user point of view
as the knowledge about the vehicle model is usually unavailable.
Model-based techniques aim to minimize either the weighted
sum of the fuel consumption and the traveling time, or the fuel
consumption only while considering the traveling time as a
constraint. To optimize both objectives simultaneously, Huang
et al. [2] used constrained nonlinear programming for predictive
control, which is a gradient-based method that finds the global
optimum if the optimized function is convex. Ivarsson et al. [3],
on the other hand, used an analytical method appropriate only
for routes with small gradients. Other approaches presented by
Melnik [4], and Howlett et al. [5] aim at optimizing only the fuel,
or more generally, energy consumption. Both constructed a set
of equations describing the vehicle and the environment, and
implemented algorithms that calculate the optimal velocity of
either a road vehicle [4] or a train [5]. This velocity is obtained by
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equation differentiation. Similarly, Khmelnitsky [6]| presented an
analytical approach to calculate the optimal control actions of a
train by minimizing the energy consumption on short segments.
In addition, he implemented a numerical approach that combines
several optimal control actions for short segments to obtain the
optimal control actions for longer routes. Akcelik and Biggs [ 7] used
an analytical method to optimize acceleration and deceleration
profiles. These profiles aim at minimizing the fuel consumption
and the traveled route, and were optimized on short routes, since
only acceleration and deceleration phases were tested. Other
researchers focused on obtaining good vehicle models to allow for
control of the vehicle. Such approaches are suitable when target
vehicle behavior is known, in contrast to the previously presented
search approaches suitable when the target behavior is unknown.
For example, Strum et al. [8] applied neural and fuzzy systems to
learn the driving model and control the vehicle. The goal was to
drive the vehicle as close as possible to a predefined speed profile.
Tanaka and Sano [9] modeled a vehicle with a fuzzy model, and
derived control rules from the model. The goal was to control the
trajectory of the vehicle along a given reference trajectory.

The black-box techniques mainly use dynamic programming
methods to find the driving strategies, as presented in the follow-
ing examples. The weighted sum of the traveling time and the fuel
consumption was minimized by several authors. Monastyrsky and
Golownykh [10], and Hooker et al. [11], on the one hand, searched
for the global optimum, which can be done only for limited route
lengths, while Hellstrom et al. [12], on the other hand, continu-
ously optimized only a finite route length ahead of the vehicle.
Other examples try to minimize only the energy consumption,
while the traveling time is considered as a constraint. Hellstrom
et al. [13] introduced an algorithm that optimizes the driving by
controlling the throttle, brakes and gears of a vehicle. In contrast,
Johannesson et al. [14] described an algorithm that schedules the
charging and discharging of an energy-storage system for a hybrid
bus. Researchers also optimized vehicle position on the route. For
example, Diehl and Bjornberg [15] optimized vehicle parking in
front of a wall. To that end, they implemented a dynamic program-
ming algorithm that minimized the traveling time and distance to
the wall.

The previously presented single-objective methods have sev-
eral disadvantages. Primarily, they find only one driving strategy
and have to be used each time the requirements, e.g., the time
constraint, change. Moreover, when a weighted sum is used, the
driving strategy very much depends on the selected weights [16].
In addition, it is not clear how to select the weights. Therefore,
if the driving strategy is not acceptable or when the requirements
change, the algorithm has to be restarted with different weights. To
find a set of driving strategies that meet the various requirements,
a multiobjective method has to be used.

The multiobjective technique finds a set of driving strategies
that are incomparable since no driving strategy is better in both
objectives than any other driving strategy. Such driving strategies
are nondominated [17]. The set of nondominated driving strategies
makes it possible to select a different strategy when the require-
ments change without restarting the algorithm or whenever the
objectives are a matter of choice [18]. This is also suitable for users
frequently traveling on the same route since each time they can
apply a driving strategy with a different trade-off between the
traveling time and the fuel consumption based on current require-
ments. The multiobjective approach is also more convenient than
the single-objective approach since no constraints and/or weights
have to be specified [19]. Moreover, Van Willigen et al. [20] pre-
sented the idea of deploying nondominated driving strategies in
adaptive cruise control of future intelligent vehicles. In this case, a
user can enter his/her preferences into the vehicle’s cruise control
atreal time. Setting preferences corresponds to real-time selection

of the driving strategy with the preferred values of the objectives.
Searching for driving strategies by modeling a real vehicle driving
on a real route as a black box and using a multiobjective optimiza-
tion algorithm has not been proposed and evaluated yet.

In this paper we present a two-level Multiobjective Optimiza-
tion algorithm for discovering Driving Strategies (MODS) on a given
route that minimizes the traveling time and the fuel consump-
tion. The lower-level algorithm is a deterministic multiobjective
algorithm based on a breadth-first search [21] and Nondominated
Sorting Genetic Algorithm (NSGA-II) [17]. The algorithm searches
for driving strategies and minimizes the traveling time and the fuel
consumption. The upper-level algorithm is a single-objective evo-
lutionary algorithm that searches for the optimal values of the input
parameters for the lower-level algorithm. The initial implementa-
tion of the lower-level algorithm was presented in [22].

The paper is further organized as follows. The implemented
driving simulation is presented in Section 2. Section 3 describes an
initial implementation of MODS, called MODS1, and an enhanced
version of the algorithm, called MODS2. Section4 presents the
numerical experiments performed with MODS1, MODS2 and two
traditional algorithms, i.e., predictive control and dynamic pro-
gramming. It also presents the obtained driving strategies and the
test cases that show how the vehicle state changes when the found
driving strategies are applied to the vehicle. The results are dis-
cussed in Section5. Finally, Section6 concludes the paper with
some ideas for future work.

2. Driving simulation

This section presents the black-box vehicle simulation model
that simulates the vehicle driving along a predefined route.

2.1. Route representation

A route R is represented as a vector of segments. Each segment
Ri, is defined with a touple (s;,, Iy, , @y » vﬁmﬁiR), where the compo-
nents are:

lenth Sigr
turning radius ry,,
inclination o,

oo LR
velocity limit Vim,ig"

The actual velocity limit vy, ;, depends on the velocity limit vﬁm,ik
and the maximum turning velocity vy ;, [23]. The maximum turning
velocity vr ;, is the maximum velocity a vehicle can reach without
skidding in a turn, and is calculated as:

Vrig = /Tig8 COS ;i Cs, (1)

where gis the acceleration due to gravity and c; is the static friction
coefficient. The actual velocity limit vy, ;, is:

*

lim, ig* ifri, = oo,

(2)

Viim,ig = . N . .
min{vy i, , Ulim,iR}' otherwise.

More precisely, if r;, = oo, then the route segment R;, is straight and

there is no maximum turning velocity. Otherwise, the segment is

a turn and the velocity limit is the lowest value of the segment

velocity limit and the maximum turning velocity.

2.2. One-step simulation

The driving simulation simulates the vehicle driving along a
predefined route. The requested input data are:
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