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Numerical calculation of the operation wavelength range
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a b s t r a c t

We calculate the operation wavelength range of polarization controllers based on rotating wave plates
such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbi-
trary birefringence compensation are numerically estimated. The results present the acceptable phase
retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-
quarter-wave plate combination, and thereby determines the operation wavelength range of a given
design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary bire-
fringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show
that the two configurations have the identical range of acceptable phase retardance within the uncer-
tainty of our numerical method.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Polarization controllers (PCs) are widely used to compensate for
unwanted polarization rotations in optical fiber cables. Such com-
pensation can alleviate the degradation of optical communication
fidelity due to polarization-dependent loss or polarization mode
dispersion [1,2], and is essential for fiber lasers and polarimetric
optical fiber sensors [3]. Polarization compensation is also critical
for polarization-encoded data transmission through optical fibers
in applications such as quantum information processing [4].

Analogous to a series of wave plates, a PC is composed of sec-
tions of optical fiber, each wound around a paddle-like disk [5].
Each section introduces a phase difference between two orthogo-
nal polarization states: this phase is proportional to the fiber clad-
ding diameter squared, the inverse of the disk diameter squared,
and the number of windings of the fiber around the disk [5]. Anal-
ogous to a rotating wave plate, the plane of each disk can be
rotated, determining which pair of orthogonal linear polarization
states experience the relative phase. Standard PC designs consist
of either two or three paddles. In the two-paddle design, both pad-
dles are quarter-wave plates (QWPs), enabling conversion of any

specific input polarization pi

!
to any desired output polarization

po

! ¼ U � pi

!
, where pi

!
and po

!
are Jones vectors and U is the Jones

matrix [6,7]. A three-paddle PC with QWP-half-wave plate

(HWP)-QWP combination can produce arbitrary birefringence, rep-
resented by any desired rotation of the Poincaré sphere with

respect to an arbitrary vector v
!
by an angle a 2 ½0;2pÞ [8].

Interestingly, commercial PCs (e.g., Thorlabs FPC020 and
FPC030) often do not come with precise working wavelength spec-
ifications, only with recommendations for the appropriate number
of turns around each disk for a relatively broad range of operation
wavelength. Since the phase retardance is inversely proportional to
wavelength, this suggests that the PC’s operation does not depend
critically on the phase retardance applied by each paddle.

Our work supports by numerical estimation the effectiveness of
a PC with phase retardances deviating significantly from the opti-
mal values. Specifically, we determine the coverage of the set of
required transformations enabled by a PC with non-optimal phase
retardances. Although we discuss these calculations in the context
of fiber PCs, our results are equally applicable to the free-space
case of non-optimal rotating wave plates. Therefore, we present a
practical guideline for choosing a PC with non-optimal optics.

2. Calculation procedures

Our model for the system is shown in Fig. 1. The PC is composed
of paddles that apply a phase difference /i between the linear
polarizations along the direction hi and hi þ 90� ði ¼ 1;2; . . .Þ. The
rotation angles are discretized to grids hi ¼ 0�;180�=Nh;2�
180�=Nh; . . . ; ðNh � 1Þ � 180�=Nh, where Nh is the number of angle

settings for each paddle. The space of polarizations states for p
!

in
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and p
!

out is also discretized according to Marsaglia’s method [9,10]
as follows. First, each polarization state is represented by a point
ðx; y; zÞ ðx2 þ y2 þ z2 ¼ 1Þ on the Poincaré sphere; this point is then
mapped to a point inside a unit circle ðx1; x2Þ 2 ð�1;1Þ ðx21 þ x22 < 1Þ
such that x¼2x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x21�x22

q
;y¼2x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x21�x22

q
;z¼1�2ðx12þx22Þ;

finally, we only retain the discrete set of points x1; x2 2
f�1þ 1=Nx;�1þ 3=Nx; . . . ;�1þ ð2Nx � 1Þ=Nxg, where Nx is the
number of values on the grid for x1 and x2. To analyze a PC’s perfor-

mance for a given input polarization p
!
in, we calculate the output

polarizations for all discrete settings of the hi’s, and round the
results to the nearest grid points ðx1; x2Þ. At each of these accessible
output grid points we mark a flag parameter, and we define
the ratio of marked flags to the total number of output grid points

� N2
x � p=4 as the coverage of the output for input p

!
in. We average

the coverage for all discretized input polarizations p
!

in.
When characterizing a PC as a generator of arbitrary birefrin-

gence (arbitrary phase shift between arbitrary two orthogonal
polarizations), birefringence U is also discretized. Note that sam-

pling birefringence U with [polarization axis v
!
, rotation angle a]

is intuitive but irrelevant because sample points become over-
crowded near a ¼ 0. Instead, we use, without rigorous proof about
the uniformity, the following sampling method shown in Fig. 2:
arbitrary birefringence can be defined by the two target polariza-

tions of H
!

(horizontal) and D
!
¼ ðH

!
þV

!
Þ=

ffiffiffi
2

p
(diagonal). We define

x1; x2 2 ð�1;1Þ to denote the output polarization UH
!

according to
the method defined in the previous paragraph, and w 2 ½0;2pÞ to

be the angular position of UD
!
within the circle that is perpendicu-

lar to UH
!

on the Poincaré sphere. We set the origin w ¼ 0 as the

destination of D
!
by the rotation defined by H

!
�ðUH

!
Þ. Polarizations

and w are discretized by Nx and Nw points, respectively. The cover-
age of birefringence compensation is estimated by counting the
marked flags on the set of points ðx1; x2;wÞ after scanning all the
wave plate directions hi’s.

3. Results for conventional two- and three-component PCs

We first test the polarization conversion capability of a two-
component PC, where the two paddles have identical birefringence
/. For the input, we only need to consider a quarter circle connect-
ing the horizontal polarization and the right-circular polarization
on the Poincaré sphere as shown in Fig. 3 because (i) overall rota-
tions of the input state that maintain the polarization ellipticity do
not change the coverage ratio, and (ii) the coverage ratio for
orthogonal input polarizations is the same, since orthogonal inputs
give orthogonal outputs. We average the coverage of the points on
this quarter circle, weighting the contribution from each point by
the density of inputs with the same coverage ratio (see the shaded
area in Fig. 3): this weighted average is the average coverage of
polarization conversion between arbitrary input and arbitrary out-
put polarizations.

The calculation results are shown in Fig. 4(a). Average coverage
greater than 95% is achievable for retardation / between 90% and
130% of the optimal value p=2. In this calculation, the number of
angle grids Nh ¼ 80 and the number of polarization grids
Nx ¼ 30. These grids are sufficiently fine for our purpose, as dis-
cussed below. A three-component PC is also tested with Nh ¼ 50
and Nx ¼ 30 as shown in Fig. 4(b). The phase retardances of the
three wave plates are respectively /;2/, and /. In this case, within
our calculation accuracy, complete coverage over arbitrary polar-
ization conversion is achievable for / between 50% and 160% of
the optimal value / ¼ p=2.

Thus far, we have only considered the ability of two- and three-
component PCs to convert arbitrary single input polarizations to

Fig. 2. Sample parameters (x1; x2;w) for an arbitrary birefringence U. U is uniquely
defined by the two output polarizations H0 and D0 of horizontal polarization H
and diagonal polarization D, respectively. D0

0 denotes the output polarization of D
under the rotation R defined by H and H0 (rotation by ðarcsinðj~H � ~H0 jÞ�
p=2Þ � signð~H � ~H0Þ þ p=2with respect to ~H � ~H0). Angle w is measured between D0

andD0
0 on the set of polarizations perpendicular toH0 with respect to the rotation axis

~H0 . x1 and x2 define H0 as described in the text.

Fig. 3. Input polarizations (circles) on the Poincaré sphere for calculation of the
polarization conversion capability. H;D, and R denote horizontal, diagonal, and
right-circular polarizations, respectively. ðN þ 1Þ is the number of input polariza-
tions, and the average coverage is calculated as the weighted sum (with the
weighting factor being the shaded area) of the results of the points. N ¼ 10 in this
work.

Fig. 1. Structure of the polarization controller. Wi ’s and Ri ’s are Jones matrices
denoting relative phase shift by /i and rotation by hi , respectively. Other notations
are defined in the text.
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