

Contents lists available at ScienceDirect

Optical Switching and Networking

journal homepage: www.elsevier.com/locate/osn

Towards end-to-end integrated optical packet network: Empirical analysis

Nassim Haddaji*, Kim Nguyen, Mohamed Cheriet

Ecole de Technologie Supérieure, Montreal, Canada

ARTICLE INFO

Keywords: GPON MPLS-TP OTN DWDM MLO OoS SDN/NFV

ABSTRACT

Today, the overloaded networks increasingly entail high operational costs but may not generate new revenues accordingly. Legacy network elements are reaching end-of-life and packet-based transport networks are not efficiently optimized. Thus, an efficient migration plan towards an End-to-End Integrated-Optical-Packet-Network (E2-IOPN) is emerging for service providers in access, metro and core networks. This paper reviews various empirical challenges faced by a Service Provider (SP) during the transformation process towards E2-IOPN as well as in the implementation of an as-built plan and high-level design for migrating towards GPON, MPLS-TP, OTN and next-generation DWDM. Then, we propose a SP longer-term strategy based on SDN and NFV approach that will offer rapid end-to-end service provisioning and centralized network control. Such strategy helps SP maintain good profit margin and best customer experience. A cost comparative study shows the benefit and financial impact of introducing new low-cost packet-based technologies to carry legacy as well as new services traffic.

1. Introduction

The residential and enterprise customers require different kind of services in service providers networks [1]. In particular, mobile backhaul networks (2G/3G/4G) represent as well a big part of SP connectivity services. Different Service Level Agreements (SLAs) and traffic constraints (bandwidth, priority, latency and resiliency) need to be considered carefully by SP designers. Rapid time-to-market service requires dealing with legacy administrative processes based on manual provisioning [2]. North-Bound Interfaces (NBI) based end-to-end service management systems, like OSS/BSS (Operation Support System / Business Support System) applications might be a possible solution [3]. So far, they still need automatic resource optimization and programmable real-time monitoring [4,5]. While many current service provider networks already stopped being profitable [6,7], some others may still increase their costs by expanding pipe capacities to deal with the bandwidth requirements of new services. Only services with differentiated prices can generate new revenues and reverse the endof-profit trend. Future networks need to be smart networks to serve next generation smart services [4]. Legacy networks are therefore required to be re-designed and dumb pipes control would have to be replaced by resources monetization and new innovative business models. We present in this paper a real service provider SP practical transformation experience towards an End-to-End Integrated Optical Packet Network (E2-IOPN) that represents the necessary infrastructure for next generation smart networks. Note that this transformation

strategy was implemented in SP network after long literature studies and market analysis with various technology partners, solution suppliers and equipment manufacturers in the telecoms industry.

Recent research in the field proposed standard perspective to optimize resources planning by focusing on the contributions and the impact of the IEEE, ITU, and IETF standards in the lower layers of the telecommunications stack such as Wavelength Division Multiplexing (WDM), Carrier Grade Ethernet (CGE), Optical Transport Network (OTN), Multi-Protocol Label Switching (MPLS) and MPLS-Traffic Profile (MPLS-TP) [9,10]. However, they do not discuss challenges and solutions to achieve such transformation plan. In this paper, we address technical challenges that most service providers are facing to build their migration plan toward the E2-IOPN, in particular, to compensate the lack of detailed standardization. Criteria for network design (routing, propagation across the network and deployment of higher-layer protocols) are discussed in [11] including cost considerations. In reality, transforming all legacy network components and the way they are managed to an E2-IOPN is very challenging. While monitoring the compromise between transformation costs and new revenue streams, SP needs to deal also with classic design challenges such as traffic shaping, bandwidth optimization and network resiliency. New challenges related to the complexity of recent mobile technologies (coming 5G for instance), smart services requirements and user Quality of Experience (QoE) are making this design exercise more complicated task [12]. With the explosive migration towards All-IP services, legacy Time Division Multiplexing (TDM) technologies are phasing out as

http://dx.doi.org/10.1016/j.osn.2017.06.003

Received 9 March 2017; Received in revised form 19 May 2017; Accepted 22 June 2017 Available online 27 June 2017

1573-4277/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

Nomenclature		NG-SDH	Next-Generation SDH
		NFV	Network Functions Virtualization
Acronyms		NMS	Network Management Systems
		NNI	Network Node Interface
ACR	Adaptive Clock Recovery	ODU	Optical Data Unit
ACS	Auto-Configuration Server	OAM	Opeartion, Administration and Maintenance
ACL	Access Control List	OD	Outer Diameter
APS	Automatic Protection Switching	OFDM	Orthogonal Frequency Division Multiplexing
ANSI	American National Standards Institute	OFMS	Optical Fiber Monitoring System
BFD	Bidirectional Forward Detection	OMCI	ONU management and control interface
BoD	Bandwidth-on-Demand	OLT	Optical Line Termination
BSS	Business Support System	OSI	open systems interconnection
BVT	Bandwidth-Variable Transponders	OSP	Out-side Plant
CAPEX	CApital EXPenditure	OSS	Operation Support System
CAR	Committed Access Rate	OTN	Optical Transport Network
CDC	Colorless, Directionless and Contention-less	PBB-TE	Provider Backbone Bridge / Traffic Engineering
CGE	Carrier Grade Ethernet	PCE	Path Computation Engine
CIR	Committed Interface Rate	PCP	Priority Code Point
CO	Central Office	PDH	Plesiochronous Digital Hierarchy
CoS	Class of Service	PHP	Per-Hop Behaviors
CORD	Central Office Re-architected as a Datacenter	PIR	Peak Interface Rate
CWDM	Coarse Wavelength Division Multiplexing	PM	Performance Monitoring
CPE	Customer Premise Equipment	PRC	Primary Reference Clock
CVLAN	Customer VLAN ID	PTP	Precise Time Protocol
DCI	Data Center Inter-connectivity	PW	Pseudo-Wire
DCSP	Differentiated services Code Point	PWE3	Pseudo-Wire Edge-to-Edge Emulation
DEI-bit	Drop Eligible Indicator bit	QoE	Quality of Experience
DNI	Dual-Node Interconnection	QoS	Quality of Service
DSLAM	Digital Subscriber Line Access Multiplexer	RAN	Radio Access Network
DWDM	Dense Wavelength Division Multiplexing	RSA	Routing and Spectrum Assignment
ePC	evolved Packet Core	RSOH	Regenerator Section OverHead
EON	Elastic Optical Network	SDH	Synchronous Digital Hierarchy
ETSI	European Telecommunications Standards Institute	SDN	Software-Defined Networks
FDT	Fiber Distribution Termination	SONET	Synchronous Optical NETwork
FTTH	Fiber-To-The-Home	SLA	Service Level Agreements
FTTC	Fiber-To-The-Curb	SP	Service Provider
FM	Fault Monitoring	SSM	Synchronization Status Message
GACH	Generic Associated CHannel	SSS	Spectrum Selective Switch
Gbps	Giga Bit Per Second	SSU	Synchronization Supply Units
GNSS	Global Networks Synchronization System	STM-x	Synchronous Transport Module - Level x
GUI	Graphical User Interface	SVLAN	Service VLAN ID
HDPE	High-Density Polyethylene Pipe	TCO	Total Cost of Ownership
HSI	High Speed Internet	TDM	Time Division Multiplexing
IP LACD	Internet Protocol	UNI	User Network Interface
LACP	Link Aggregation Control Protocol	VC-x	Virtual Container - Level x
LAG	Link Aggregation	VPN	Virtual Private Network
LSP	Label Switched Path	VNF VBBB	Virtual Network Function
LTE MDISTI	Long Term Evolution	VRRP	Virtual Router resilient Protocol Virtual Local Area Network
	PMPLS - Transport Profile	VLAN WEO	
MLO MDLS	Multi-Layer Optimization	WFQ	Weighted Fair Queuing
MPLS MSOH	Multi-Protocol Label Switching	WRR	Weighted Robin Round
MSOH MSPP	Multiplexer Section OverHead	WSON	Wavelentgh Switched Optical Network
MSPP NBI	Multi-Service Provisioning Platform North-Bound Interfaces	WSS	Wavelength Selection Switching
TADI	Norm Dound Interfaces		

their rigid pipes are no longer efficient for packet-based services [12,13].

Along with the increasing number of residential (and small business) applications, the bandwidth and Quality of Services (QoS) offered to current quadruple-play services by legacy Digital Subscriber Lines (DSL) solutions is not anymore sufficient. Copper cables in the last mile need to be re-placed by fiber. DSL technology needs to be migrated to GPON (Gigabit Passive Optical Network) based FTTH (Fiber-To-The-Home) networks [8,10,14,83]. In this paper, we investigate detailed

FTTH design based on GPON technology and related Out-side Plant (OSP) part. To manage millions of Customer Premises Equipment (CPE) and to monitor the related millions of fiber optical cables, a network should be designed in a scalable fashion, for instance, using TR-069 Auto-Configuration Server (ACS) and Optical Time Domain Reflectometer (OTDR) based Optical Fiber Monitoring System (OFMS). TR-069 is a CPE management protocol offering GPON CPE auto-configuration, dynamic service provisioning, remote Software and firmware management as well as diagnostics, status and performance

Download English Version:

https://daneshyari.com/en/article/4957165

Download Persian Version:

https://daneshyari.com/article/4957165

Daneshyari.com