
Performance Evaluation 116 (2017) 70–83

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

Balanced fair resource sharing in computer clusters
Thomas Bonald a, Céline Comte b,a,*,1
a Télécom ParisTech, Université Paris-Saclay, France
b Nokia Bell Labs, Nozay, France

a r t i c l e i n f o

Article history:
Available online 1 September 2017

Keywords:
Parallel processing
Multi-server queues
Balanced fairness
Order independent queues
Whittle networks

a b s t r a c t

We represent a computer cluster as a multi-server queue with some arbitrary graph of
compatibilities between jobs and servers. Each server processes its jobs sequentially in
FCFS order. The service rate of a job at any given time is the sum of the service rates of
all servers processing this job. We show that the corresponding queue is quasi-reversible
and use this property to design a scheduling algorithm achieving balanced fair sharing of
the computing resources.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Load balancing is a critical component of large-scale computer clusters. The flow of requests must be directed to the
servers under various constraints like data availability, state of the servers and service level agreements. In this paper, we
represent these constraints by an arbitrary graph of compatibilities between jobs and servers. The computer cluster can then
be viewed as a multi-server queue where jobs are allocated to servers according to this graph. We assume that each server
processes its jobs sequentially in FCFS order. The service rate of a job at any given time is the sum of the service rates of all
servers processing this job, which means that resource pooling does not induce any processing overhead. We prove that, for
Poisson job arrivals and exponential job sizes, this multi-server queue is quasi-reversible [1]. Exploiting this property, we
design a novel scheduling algorithm achieving balanced fair sharing of the computing resources. This makes the stationary
distribution of the system state insensitive to the job size distribution beyond the mean, a practically interesting property
leading to simple and robust engineering rules.

Balanced fairness was introduced in the context of data networks as the most efficient resource allocation having the
insensitivity property, allowing the service provider to develop dimensioning rules based on average traffic only, and not on
detailed traffic characteristics [2]. Formally, it is the only allocation such that the underlying Markov process is reversible
and at least one resource is saturated in each state. Balanced fairness has later been used to evaluate the performance of
content-distribution networks [3,4]. However, no scheduling algorithm has been proved so far to achieve this allocation,
except in some specific caseswhere it coincideswith proportional fairness [5,6]. To the best of our knowledge, our scheduling
algorithm is the first practical implementation of balanced fairness, just like the round-robin scheduling algorithm is a well-
known practical implementation of the ideal processor-sharing (PS) service discipline.

Multi-server queues with specialized servers have already been considered in [7–10] but these models assume that each
job can be processed by only one server at a time. Our model is closer to the multi-server queue with redundant requests
introduced by Gardner et al. [11,12], where the class of a job defines the set of servers onwhich it is replicated.When several
replicas of the same job are in service simultaneously on different servers, their service times are independent and the first

* Corresponding author.
E-mail addresses: thomas.bonald@telecom-paristech.fr (T. Bonald), celine.comte@nokia.com (C. Comte).

1 The authors are members of LINCS, see http://www.lincs.fr.

http://dx.doi.org/10.1016/j.peva.2017.08.006
0166-5316/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.peva.2017.08.006
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2017.08.006&domain=pdf
mailto:thomas.bonald@telecom-paristech.fr
mailto:celine.comte@nokia.com
http://www.lincs.fr
http://dx.doi.org/10.1016/j.peva.2017.08.006


T. Bonald, C. Comte / Performance Evaluation 116 (2017) 70–83 71

instance to be completed stops the others. It is easy to see that, under the assumption of exponential service times, the two
models are in fact equivalent. In both cases, the FCFS policy makes the system very sensitive to the job size distribution, so
that the actual performance may vary significantly when the job sizes are not exponentially distributed with the same unit
mean. Our objective in this paper is precisely to relax this assumption by designing a scheduling policy which makes the
system insensitive to the job size distribution.

It turns out that our model belongs to the family of Order Independent (OI) queues [13,14]. As observed in [14],
OI queues generalize a number of queueing systems like BCMP networks under the FCFS or PS service discipline [15],
multiserver stations with concurrent classes of customers (MSCCC) and multiserver stations with hierarchical concurrency
constraints (MSHCC) [16,17]. OI queues are known to be quasi-reversible [1]. In particular, the state of the queue has an
explicit stationary distribution under the usual assumptions of Poisson arrivals and exponential service times. Moreover,
the stationary distribution remains explicit in the presence of random routing, where jobs can leave or re-enter the queue
upon service completion.

The first contribution of this paper is a scheduling algorithm which exploits this last property to mitigate the sensitivity
to the job size distribution. Just like round-robin scheduling which implements the PS service discipline in the single-server
case, our mechanism enforces insensitivity by interrupting the jobs frequently and moving them to the end of the queue.
Routing is thus reinterpreted in terms of job interruptions and resumptions. The queue state is updated in the course of
the job shiftings and the exponentially distributed sizes with unit mean in the multi-server queue now represent small
fragments of the jobs. When the interruptions are frequent, each job tends to go back and forth in the queue and its average
service rate is mainly determined by the number of jobs of each class which are present at the same time.

This last observation motivates us to adopt a higher viewpoint. Specifically, we aggregate the state of the multi-server
queue to only retain the number of jobs of each class, but not their arrival order. This aggregate state turns out to be an
appropriate level of granularity to analyze the behavior of the queue. Its stationary measure is exactly that of a Whittle
network [18] containing as many PS queues as there are classes in the original multi-server queue. This leads us to our
second contribution: a new theoretical understanding of the multi-server queue. Using the state aggregation, we show in
Theorem 1 that the queue is stable under any vector of acceptable arrival rates. In practice, it suggests that our algorithm
will tend to stabilize the systemwhenever possible. Our second theoretical result, stated in Theorem 2, concerns the service
rate received on average by each job as its position in the queue evolves. We show that the average per-class service rates
when the number of jobs of each class is given are exactly those obtained by applying balanced fairness.

In addition to help us to understand the behavior of our algorithm, this equivalence with balanced fairness allows us to
derive explicit expressions for the performancemetrics of themulti-server queue with an arbitrary graph of compatibilities.
Indeed, the insensitivity property satisfied by balanced fairnesswas used for instance in [3,4,19] to obtain simple and explicit
recursion formulas for the performance metrics. Thanks to the aggregation we propose, these formulas can be applied as
they are in themulti-server queue. They predict the exact performance of our algorithmwhen the job sizes are exponentially
distributed. For an arbitrary job size distribution, we show by simulation that the system becomes approximately insensitive
when the number of interruptions per job increases, so that the performance tends to that obtained under balanced fairness.
We further observe that only a few interruptions per job actually suffice to reach approximate insensitivity.

The remainder of the paper is organized as follows. In Section 2, we introduce the model and give the stability condition
after recalling results on OI queues. In Section 3, it is shown that the resource allocation is balanced fairness in the presence
of reentrant jobs. This result is used in Section 4 to design our scheduling algorithm. Some numerical results are presented
in Section 5. Section 6 concludes the paper.

2. A multi-server queue

We consider a multi-server queue with N job classes and S servers. The class of a job may identify a client of the data
center or a type of service; it defines the set of servers that can process this job. For each i = 1, . . . ,N , class-i jobs enter the
queue according to an independent Poisson process of intensity λi. The job sizes are independent, exponentially distributed
with mean 1. We assume for now that each job leaves the queue immediately after service completion.

For each i = 1, . . . ,N , we denote by Si ⊂ {1, . . . , S} the set of servers that can process class-i jobs. Equivalently, these
constraints can be represented as a bipartite graph of compatibilities between the N job classes and the S servers, where
there is an edge between class i and server s if and only if s ∈ Si. Each job can be served in parallel by multiple servers
and each server processes the job sequentially in FCFS order. Hence, when there are several servers available for a job at its
arrival, all these servers process this job. When the service of a job is complete, all the servers that were processing it are
reallocated to the next job they can serve in the queue. There is no service preemption, so that at most one job of each class
can be served at any given time.

We describe the evolution of the sequence of jobs in the queue, ordered by their arrival times. Thus the queue state is
some sequence c = (c1, . . . , cn) of length n, where n is the number of jobs in the queue and ck ∈ {1, . . . ,N} is the class of
job in position k, for each k = 1, . . . , n, starting from the head of the queue. ∅ denotes the empty state, with n = 0.

When a job is in service on several servers, its service rate is the sum of the capacities of the servers that are processing
it. Denoting by µs > 0 the capacity of server s for each s = 1, . . . , S, the total service rate in any state c is thus given by

µ(c) =
∑

s∈
⋃n

k=1 Sck

µs.



Download English Version:

https://daneshyari.com/en/article/4957247

Download Persian Version:

https://daneshyari.com/article/4957247

Daneshyari.com

https://daneshyari.com/en/article/4957247
https://daneshyari.com/article/4957247
https://daneshyari.com

