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a b s t r a c t

A common assumption when modeling queueing systems is that arrivals behave like a
Poisson process with constant parameter. In practice, however, call arrivals are often
observed to be significantly overdispersed. This motivates that in this paper we consider a
mixed Poisson arrival process with arrival rates that are resampled every N−α time units,
where α > 0 and N a scaling parameter.

In the first part of the paper we analyze the asymptotic tail distribution of this doubly
stochastic arrival process. That is, for large N and i.i.d. arrival rates X1, . . . , XN , we focus on
the evaluation of the probability that the scaled number of arrivals exceeds Na,

PN (a) := P
(
Pois

(
NXNα

)
⩾ Na

)
, with XN :=

1
N

N∑
i=1

Xi.

The logarithmic asymptotics of PN (a) are easily obtained from previous results; we find
constants rP and γ such that N−γ log PN (a) → −rP as N → ∞. Relying on elementary
techniques, we then derive the exact asymptotics of PN (a): For α < 1

3 and α > 3 we
identify (in closed-form) a function P̃N (a) such that PN (a)/̃PN (a) tends to 1 as N → ∞. For
α ∈ [

1
3 ,

1
2 ) and α ∈ [2, 3) we find a partial solution in terms of an asymptotic lower bound.

For the special case that the Xis are gamma distributed, we establish the exact asymptotics
across all α > 0. In addition, we set up an asymptotically efficient importance sampling
procedure that produces reliable estimates at low computational cost.

The second part of the paper considers an infinite-server queue assumed to be fed by
such a mixed Poisson arrival process. Applying a scaling similar to the one in the definition
of PN (a), we focus on the asymptotics of the probability that the number of clients in the
system exceeds Na. The resulting approximations can be useful in the context of staffing.
Our numerical experiments show that, astoundingly, the required staffing level can actually
decrease when service times are more variable.
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1. Introduction

In communications engineering it is increasingly accepted that traditional Poisson processes do not succeed in capturing
the variability that is typically observed in real call arrival processes [1,2]. This led to the idea to instead use Cox processes [3]
to model arrivals, i.e., Poisson processes in which the arrival rate follows some (non-negative) stochastic process. Perhaps
the simplest choice, advocated in [4], is to resample the arrival rate (in an i.i.d. manner) every ∆ units of time; during the
resulting time intervals the arrival rate is assumed constant. We denote these i.i.d. arrival rates by (Xi)i∈N. This paper studies
two settings in which such an overdispersed arrival process is featured.

1. Number of arrivals. We start by studying the tail asymptotics of the total number of arrivals in a time interval of given
length. We do so in a scaling regime that was proposed in [4], in which the arrival rates and sampling frequency are jointly
inflated as follows. In the first place, it is natural to assume that arrival rates are large, as these represent the contributions
of many potential clients; this can be achieved by letting these arrival rates be NX1,NX2, . . . for i.i.d. (Xi)i∈N and some large
N . In addition, the sampling frequency is set to Nα (assumed to be integer) and hence the size of each time slot is assumed
to be∆ = N−α . Evidently, the larger α, the more frequently the arrival rate is resampled.

The focus is on the probabilities PN (a) and pN (a), where

PN (a) := P
(
Pois

(
NXNα

)
⩾ Na

)
, with XN :=

1
N

N∑
i=1

Xi,

and pN (a) denotes the corresponding probability that the mixed Poisson random variable equals Na (assumed to be integer).
We consider the situation that a is larger than ν := EXi, which entails that the event under consideration is rare and that we
are in the framework of large deviations theory.

We would like to stress the important role that is played by the time-scale parameter α > 0. One could imagine that in
a rapidly changing environment, the inherent overdispersion of the arrival process hardly plays a role, whereas in a slowly
changing random environment, overdispersion is expected to be more dominant. Hence the parameter α can be tweaked
in order to match any real-world scenario in that sense. That is, if α is large, since the arrival rate is resampled relatively
frequently, it is anticipated that themixed Poisson randomvariable behaves Poissonianwith parameterNν. If on the contrary
α is small, one would expect that detailed characteristics of the distribution of the Xi matter. For α = 1 both effects play a
role. This intuition underlies nearly all results presented in this paper.

2. Number of customers in an infinite-server queue. In the second part of this paper we focus on a cornerstone model in the
design and performance evaluation of communication networks: the infinite-server queue. Thismodel can be used to produce
approximations formany-server systems. In our paper, the arrival process is the overdispersed processwe introduced above,
and the service times are i.i.d. samples from a (non-negative) distribution with distribution function F (·). The number of
clients in this infinite-server queue, under the arrival process described above, is studied in [4]. As it turns out, one can
prove the (conceivable) property that the number of clients in the system at time t (which we, for simplicity, assume to
be a multiple of ∆), has a mixed Poisson distribution, i.e., a Poisson distribution with random parameter. This parameter is
given by

t/∆∑
i=1

Xi∆ fi(t,∆),

where fi(t,∆) denotes the probability that a call arriving at a uniformly distributed epoch in the interval [(i − 1)∆, i∆) is
still in the system at time t . Evidently, for small ∆ this probability essentially behaves as F (t − i∆), with F (·) := 1 − F (·)
denoting the complementary distribution function.

We renormalize time such that t ≡ 1 (which can be done without loss of generality), and again impose the scaling along
the lines of [4]: the arrival rates are NXi and the interval width N−α . Then the number of clients in the system is Poisson with
random parameter

Nα∑
i=1

(NXi)N−α fi(1,N−α) = N1−α
Nα∑
i=1

Xi ωi(Nα), (1)

whereωi(N) := fi(1,N−1) ≈ F (1− i/N). A clearly relevant object of study concerns the probability that the number of clients
in the system exceeds some threshold Na:

QN (a) := P

(
Pois

(
N1−α

Nα∑
i=1

Xi ωi(Nα)

)
⩾ Na

)
; (2)

qN (a) denotes the corresponding probability that the mixed Poisson random variable equals Na. To ensure that the event
under consideration is rare, a is assumed to be larger than

ν

Nα

Nα∑
i=1

ωi(Nα) ≈
ν

Nα

Nα∑
i=1

F (1 − i/Nα) ≈ ν

∫ 1

0
F (x)dx.
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