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a b s t r a c t

Joint estimation of channel and Carrier Frequency Offset (CFO) in Orthogonal Frequency Division Multi-
plexing (OFDM) systems, using a Statistical framework, is shown in this paper. Hybrid Cramér–Rao Lower
Bounds (HCRLBs) for the estimation of CFO together with the channel are obtained. The significance
of prior information in the formulation of a joint estimator is shown by comparing HCRLB with the
corresponding standard CRLB. We propose a Joint Maximum a posteriori (JMAP) algorithm for the
estimation of channel and CFO in OFDM, utilizing the prior statistical knowledge of channel. To reduce
the complexity of JMAP estimator, a Modified JMAP (MJMAP) algorithm, which has no grid searches, is
also proposed. The estimation methods are analyzed by numerical simulations and resultant conclusions
validate the better performance of the proposed algorithms when compared with previous algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) has been
adopted by numerous wireless communication systems due to its
high spectral efficiency and robustness to multipath fading. OFDM
based systems are susceptible to performance degradation due
to impairments like Carrier Frequency Offset (CFO). CFO occurs
due to the frequency differences between RF oscillators used in
the OFDM transmitter and receiver, and channel induced Doppler
shifts [1,2]. The CFO and channel deteriorate the performance of
OFDM systems, if not estimated and compensated properly [3,4].

Several algorithms have been introduced for the compensation
of the degrading effects of channel and CFO. Accurate estimates
of symbol timing and carrier frequency offset using one training
sequence is obtained in [5]. A Maximum Likelihood (ML) joint
estimator for CFO together with Sampling Frequency Offset (SFO)
for an OFDM system, assuming perfect channel knowledge, is de-
scribed in [6]. The joint estimation of CFO and channel for OFDM
systems in the presence of timing ambiguity is addressed in [7].
Also, joint estimation of CFO, SFO, channel, and timing error in
an OFDM-based system is explored in [8]. Timing and frequency
synchronization algorithms using nonlinear least squares estima-
tion method are proposed in [9]. The authors of [10] presented a
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comparative study of different algorithms for frequency offset es-
timation in OFDMwhich are based on periodic training sequences.
Furthermore, low complexity algorithms for the estimation of syn-
chronization impairments with the sparse channel are developed
in [11]. A joint ML time-frequency synchronization and channel
estimation algorithm for MIMO-OFDM systems has been proposed
in [12]. RLS-based joint estimation and tracking of the channel
response, SFO, and CFO for OFDM is described in [13]. Further, joint
pilot-aided estimation of the residual CFO and SFO inOFDMsystem
is proposed in [14], with frequency estimates derived in closed-
form. In [15], a pilot-aided joint Channel Impulse Response (CIR),
CFO, and SFO estimation scheme, assuming a perfect start of frame
detection and neglecting channel statistics, has been proposed for
OFDM based systems.

But the methods described in [5–15] have neglected the prior
statistical information related to channel in the formulation of
joint estimators and are not optimal in a statistical approach. The
prior knowledge of the channel can be extracted using the meth-
ods described in [16], where estimation techniques of Statistical
Properties of Fading Channels are discussed. In [16], algorithms
for ML estimates of the covariance parameters of fading channels
together with the noise variance of AdditiveWhite Gaussian Noise
(AWGN) channel are described. Therefore, the estimated AWGN
noise variance and fading covariance matrix can be incorporated
into channel estimation by utilizing the Bayesian estimators [17],
which outperforms the classical channel estimators. Joint estima-
tion of the random impairments in OFDM-based systems is inves-
tigated in [18], together with the derivation of bounds. Estimators
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based on ML and Minimum Mean Square Error (MMSE) criteria
for the channel estimation are proposed in [19], without consid-
ering the effect of other impairments. Also, a Compressed Sensing
based sparse channel estimation for OFDM-based communication
systems is presented in [20]and [21].

Usually, theMSE of the estimator is comparedwith Cramér–Rao
Lower Bound (CRLB) [17], to assess the performance of estimation
techniques for deterministic parameters. CRLB for joint estimation
of the channel in OFDM based communication system channel
estimator is derived in [22]. The CRLB for estimation techniques
including random parameters are derived using the Bayesian ap-
proach with prior statistical information and is called Bayesian
CRLB (BCRLB) [23]. For estimations involving both deterministic
and random parameters, the most suitable CRLBs are found to be
Hybrid CRLBs (HCRLBs) [23].2

In this paper, we present the signal model formulation in Sec-
tion 2 followed by the HCRLB analysis of estimation of channel to-
gether with CFO in OFDM in Section 3. The formulation of different
MAP algorithms for the estimation of channel and CFO is given in
Section 4. A MAP estimator for the channel in the absence of CFO
is developed followed by a joint estimator for channel and CFO. A
less complex joint estimator, which has no grid searches, is also
proposed. Finally, simulation results are presented in Section 5.

2. Signal model

OFDM system using any constant modulus modulation tech-
nique is considered. Let T be the transmitter signaling period and
M be the number of OFDM subcarriers with the subcarrier spacing
given by 1/(MT ). The input symbols undergo Inverse Fast Fourier
Transform (IFFT) operation and cyclic prefix (CP) addition before
being sent from the antenna at the transmitter. The transmitted
signal is affected by fading channel, where the channel is mod-
eled as exponentially decreasing independent Rayleigh multipath
slow fading channel [24]. Frequency differences between carrier
frequency oscillators used in the OFDM transmitter and receiver,
and channel induced Doppler shifts cause a net CFO of ∆fc in the
received signal, where fc is the operating radio carrier frequency.
The normalized CFO is defined as ϵ = ∆fcMT , where M is the
number of subcarriers and T is the sampling time.

The transmitted signal, x(t), and received signal, r(t), are given
by

x(t) =
√
2ℜ[xb(t) exp(j2π fc t)], (1)

and

r(t) =
√
2ℜ[rb(t) exp(j2π fc t)] (2)

where xb(t) and rb(t) represent complex baseband equivalent
representation of x(t) and r(t), respectively, and fc is the carrier
frequency. Assuming the wireless channel under consideration
to be linear and time-invariant, the received signal, r(t), can be
expressed as

r(t) = exp(j2π∆fc t)
∞∑
i=0

aix(t − τi) + w(t). (3)

2 Notations: B̂ denotes the estimate of B and B̄ denotes the actual value of B. γ̂(r)
denotes an estimator of γ , where r is the observation vector. ℑ(B) and ℜ(B) denote
the imaginary and real parts of B, respectively. h̃ and h denote time-domain and
frequency-domain signals, respectively. IN denotes the N × N identity matrix. BT ,
B∗ , and BH denote transpose, complex conjugate, and Hermitian of B, respectively.
[B]a,b denotes the (a, b)th element of B. ◦ and ⊗ represent Hadamard product and
Kronecker products, respectively and ∥y∥n denotes ln-norm of y. diag[y] represents
a diagonal matrix with y as diagonal and diag[B] denotes the diagonal of B as a
column vector. Det(B) and Tr(B) represent determinant and trace of B, respectively.
∂(B)
∂η

represents the partial derivative of B. p(.) denotes pdf and Eab[.] denotes the
expectation over a and b. ∆ represent partial derivative operator, where ∆γ =

[
∂

∂γ1
, ∂

∂γ2
, . . .]T , and ∆α

γ = ∆γ∆T
α .

where x(t) is the transmitted signal, w(t) is the AWGN process at
the receive antenna, and ai and τi represent overall attenuation and
propagation delay, respectively, from the transmitter to receiver at
the ith path. Thus, from (1)–(3)

r(t) =
√
2ℜ [rb(t) exp(j2π fc t)]

= exp(j2π∆fc t)
√
2ℜ

×

[{
∞∑
i=1

aixb(t − τi) exp(−j2π fcτi)

}
exp(j2π fc t)

]
.

Comparing with (2)

rb(t) = exp(j2π∆fc t)
∞∑
i=1

abi xb(t − τi), (4)

where abi = ai exp(−j2π fcτi). The baseband equivalent of input
signal is represented as

xb(t) =

∞∑
l=0

x(l)sinc(t/T − l), (5)

where sinc(t/T ) =
sin(π t)

π t , x(l) is the baseband discrete time trans-
mitted signal, and T is the sampling time. Substituting (5) in (4),
we get

rb(t) = exp(j2π∆fc t)
∞∑
i=1

abi

∞∑
l=0

x(l)sinc(t/T − τi/T − l),

The sampled output at multiples of T are given by, r(n) = rb(nT ),
as

r(n) = exp(j2π∆fcnT )
∞∑
l=0

x(n − l)hl, (6)

where hl denotes the lth tap of Channel Impulse Response (CIR)
given by

hl =

∞∑
i=1

abi sinc[l − τi/T ].

The lth channel tap is interpreted as the (lT )th sample of the base-
band channel response hb(τ ) convolved with sinc(τ/T ). Also, hl is
modeled as circular symmetric Gaussian random variable based on
the assumption that there are a large number of statistically in-
dependent reflected and scattered paths with random amplitudes
corresponding to a single tap. Thus the CIR vector is given by

h = [h0, h1, . . . , hP−1]
T ,

where P is the number of significant taps in CIR. The channel
coefficients, hl, are assumed to be distributed as hl ∼ CN (0, σ 2

l ),
ℜ{hl} ∼ N (0, σ 2

l /2), and ℑ{hl} ∼ N (0, σ 2
l /2). Therefore, the sam-

ples of the time-domain channel,h, is circular Gaussian distributed
as h ∼ CN (0,Σ), where Σ of h, the diagonal covariance matrix, is
assumed to be known [16]. Considering the AWGN at the receiver,
r(n) in (6) is given by

r(n) = exp(j2π∆fcnT )
P−1∑
l=0

hlx(n − l) + w(n), (7)

where w(n) is the independent circular symmetric additive Gaus-
sian noise at the receive antenna with mean zero and variance σ 2

w .
Thus r(n) in (7) can be expressed as,

r(n) = exp(j2πεn/M)
P−1∑
l=0

hlx(n − l) + w(n). (8)
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