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a b s t r a c t

In this article we address a novel method for spectrum sensing, based on the Expectation Maximization
algorithm applied to the histogram of the moving average signal power. The method enables the
estimation of the number of active users in a given frequency band, the power received fromeach user, the
occupied time slots and the front-end noise floor. The proposed approach takes advantage of the statistical
properties of the averaging estimator output, which allows to model the received estimated power as a
Gaussianmixture. Thismodel represents the distributions of the users transmitted signal power aswell as
the system noise floor. Moreover, the Gaussian with the lowest mean that is related with the noise floor,
can be used to estimate an adaptive threshold for a constant false alarm rate detector. Finally, themethod
was validated in aWi-Fi experimental setup, where real-world data was acquiredwith a software defined
radio.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Long-Term Evolution (LTE) is the current standard for high-
speed wireless communication systems and has reached its matu-
rity. The new releases only consider incremental improvements to
the standard without any additional spectral bands [1]. In the re-
cent Visual Network Index (VNI) report [2], it is foreseen that an
incremental approach will be unable to meet the future demands
of the mobile data by 2019 when an increase of traffic is expected
compared to 2014.

Therefore, with a limited amount of available spectrum and
the necessity of increasingly higher data-rates, spectrum sharing
became a relevant research topic in 5G mobile communication
systems [3]. This approach allows the dynamic assignment of
spectrum resources to RF devices in an opportunistic way, even
for frequency bands that may be already assigned to primary
users. This is especially true provided that it is possible to prevent
collisions between opportunistic users and the primary users.
However, this strategy presents a huge challenge to spectrum
regulators in order to control interference.

The future spectrum sharing implementations can be used in
licensed spectrum if the opportunist users sense any incumbent
signals, being constantly aware of the medium in order to avoid
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conflict with the primary users that have priority in that frequency
band [4]. It can also be applied to an unlicensed spectrum where
users need to sense the occupation of these unlicensed bands in
order to allocate their communication data on channels without
interfering with other users.

For sharing unlicensed and licensed spectra, the key element
will be the need to sense the occupation of the spectral bands
by opportunistic RF devices. Spectrum sensing is thus the key
mechanism for any multiple access communication medium. It
avoids collisions between users that share the access to the
medium, and reduces the contention delay experienced in dense
user environments. Even in a scenario where a central database
assigns spectrum resources to the users taking into consideration
frequency, time and space, the spectrumsensingwill bemandatory
in order to supervise the behavior of the RF systems. This option
is currently tested in pilot project by the Microsoft Spectrum
Observatory [5].

The main goal of spectrum sensing is to determine when
a certain frequency band is being used [6]. In this work the
proposed channel utilization analysis is based on the Expectation
Maximization (EM) algorithm. The EM algorithm is usually
employed for the extraction of unknown parameters where the
observed data set has a known distribution function. The most
common estimation problem is usually to obtain the mean and
variance of a given set of signals in the presence of noise [7]. For
this reason, EM has typically been associated with reconstruction
and segmentation of data, with a clear emphasis on image
processing [8,9].
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More recently, the application of EM has been studied for
Spectrum Sensing. In [10] the instantaneously received power of
a single transmitter is detected. The received signal suffers multi-
path propagation that can be modeled approximately by a gamma
distribution and the parameters estimatedwith the EM. The noise-
floor is also approximated to a gamma distribution to account
for non-Gaussian sources of noise. In [11] measured spectra are
acquired by a spectrum analyzer and evaluated using EM. In this
article the authors state that the amplitude of the transmitted
wireless signals follows a Rayleigh distribution while the noise
follows a Gaussian distribution. This statement allows the use of a
Rayleigh–Gaussian mixture as a model for the analyzed data with
the EM algorithm. In [12] EM is used for a multi-antenna Spectrum
Sensing network to detect the primary user transmissions. In
the article a Rayleigh fading channel is assumed but the noise
and the signal are both modeled by Gaussian distributions
due to power averaging. The discrete Fourier Transform of the
data is then analyzed by the EM algorithm using a complex
Gaussian DistributionMixturemodel. Themethod expects a single
transmission in each channel and assumes perfect knowledge of
the frequency responses of each receiver channel and the noise
floor variances.

In the method proposed in this paper as the signal analysis is
performed after amoving average of the signal energy, the central-
limit theorem ensures that the distribution of the signals and noise
will be close to the Gaussian mixture model. Allowing to sense
both the signal received from a predominant direct path as well
as those scattered by a heavy multi-path channel. The proposed
method works in multi-transmitter scenario and does not need
to know the number of transmitters in a given frequency channel
due to a priori knowledge of the energy estimation variance.
This method also makes a novel use of the EM algorithm on
the RF data energy estimation, by using a histogram to identify
the spectrum occupation through time allowing for a higher
algorithmic efficiency. This method is also able to determine the
number of active users on a given channel and the time slot that
each one occupies based on the analysis of the signal received
energy. The noise-floor is also dynamically estimated from the
EM and is used for a Constant False Alarm Rate (CFAR) threshold
calculation for signal detection.

2. Spectrum sensing with Gaussian mixture models

2.1. Signal model

Consider a spectrum sensing front-end that is constantly
analyzing the RF spectrum. The sensed spectrum is divided into
multiple sub-bands, where each sub-band may be vacant (only
noise-floor is present) or it is occupied by one of U possible users.
We assume that each possible user will be sensed by the RF front-
endwith a unique power level that is due to the uniqueness of each
path from the transmitting user to the sensing unit. At a particular
instance of time n, the received signal will then be one of the U
users or, if no one is transmitting, the received signal will be the
background noise floor. This scenario is modeled by the following
hypothesis:

Ho : x(n) = w(n)
Hk : x(n) = sk(n) + w(n) (1)

where x(n) is the discrete received time signal in the front-end, sk
denotes the signal transmitted by the user k = 1, 2, . . . , K − 1
and w(n) the additive zero-mean white Gaussian noise. A sensing
interval, encompassing N samples, will be a sequence of received
user signals, represented by Hi, and also a noise floor, described
by Ho. Let x denote the signal vector with a sample size of N , this
vector is given by the concatenation of a set ofHi andHo states. The
vector x contains amixture of various transmittedusers signals and

Fig. 1. Functional diagram of the used energy estimator.

the noise floor. As we assume that each sensed user has a unique
power level, an energy estimation analysis of the x data vector will
be able to differentiate the different users of the spectrum.

2.2. Signal energy estimation

2.2.1. Energy estimator
In order to analyze the occupation, the spectrum can be

divided into individual sub-bands. This spectrum division can
be performed, for example, by a band-pass filter-bank, with the
necessary bandwidth for the required specifications. For each
individual sub-band, the filtered signal can be analyzed to detect
occupation. On the other hand, each i user of the shared medium
will transmit different data at a different power level. Then, to
characterize the energy in the sub-band, the processing steps
illustrated in Fig. 1 are proposed. The input x is the acquired
complex signal with component in phase (xI ) and quadrature (xQ ).
The complex absolute square of the signal is calculated in order
to obtain its instantaneous energy. The instantaneous energy is
filtered by an L ordermoving average. The last step ensures that the
output of the filter has an approximate Gaussian distribution [13].
Finally, the smoothed energy estimation is converted to decibels.

Considering the transmission scenario described in Eq. (1) the
smoothed energy can correspond to either user or noise. The
probability density function of the output y can be modeled as
a mixture of K Gaussian distributions corresponding to K − 1
active users and the noise-floor. The output can be modeled by a
Gaussian Mixture Model, where each Gaussian has an unknown
mean, which corresponds to its received energy, and a variance
that will only depend on the order L of the moving average as will
be proven latter.

2.2.2. Complex absolute square
For convenience of calculation, let us assume the front-end

input as zero-mean Gaussian complex data, then the absolute
square of the input is given by the sum of the squares of the phase
and quadrature part of the signal.

c = |x|2 =


x2I + x2Q

2

= x2I + x2Q . (2)

By definition the Chi-Squared distribution is the result of squar-
ing a standard normal random variable [14]. So, if x ∼ N (0, σ 2),
x2 ∼ σ 2χ2

1 , whereχ2
1 is the Chi-Squared distributionwith 1 degree

of freedom. Themean and the variance of Chi-Squared are E[χ2
1 ] =

1 and Var[χ2
1 ] = 2, respectively. The mean of the squared signal is

given by E[x2] = σ 2 and the variance by Var[x2] = 2σ 4 [15]. By
assuming that the two components of the complex value are nor-
mally distributed independent variables xI , xQ ∼ N (0, 1

2σ
2
x ), i.e.

both with zero mean and the same variance. Then, the square of
the quadrature and phase components of the signal will follow the
Chi-Squared distribution x2I , x

2
Q ∼ χ2

1 ( 1
2σ

2
x , 1

2σ
4
x ) with the mean

and variance calculated as previously explained.
The output of the first block, c , is the sum of the squared phase

and quadrature components. Therefore, the c signal is the sum of
two independent components which have identical Chi-Squared
distributions. The distribution of the signal at the output of the first
block of Fig. 1 is also a Chi-Squared distribution c ∼ χ2

1 (σ 2
x , σ 4

x ).
Therefore the mean is equal to the variance of the input signal,
while the variance is the square of the input variance.
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