
Applied Soft Computing 14 (2014) 577–593

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

The role of cardinality and neighborhood sampling strategy in
agent-based cooperative strategies for Dynamic
Optimization Problems

Antonio D. Masegosa ∗, David Pelta, Ignacio G. del Amo
Models of Decision and Optimisation Research Group, Center for Research on ICT, University of Granada, 18071 Granada, Spain

a r t i c l e i n f o

Article history:
Received 8 May 2012
Received in revised form 23 June 2013
Accepted 7 August 2013
Available online 17 September 2013

Keywords:
Dynamic Optimization Problems
Agent-based optimization
Hybrid metaheuristics
Cooperative strategies

a b s t r a c t

The best performing methods for Dynamic Optimization Problems (DOPs) are usually based on a set of
agents that can have different complexity (like solutions in Evolutionary Algorithms, particles in Parti-
cle Swarm Optimization, or metaheuristics in hybrid cooperative strategies). While methods based on
low-complexity agents are widely applied in DOPs, the use of more “intelligent” agents has rarely been
explored. This work focuses on this topic and more specifically on the use of cooperative strategies
composed by trajectory-based search agents for DOPs. Within this context, we analyze the influence
of the number of agents (cardinality) and their neighborhood sampling strategy on the performance of
these methods. Using a low number of agents with distinct neighborhood sampling strategies shows
the best results. This method is then compared versus state-of-the-art algorithms using as test bed the
well-known Moving Peaks Benchmark and dynamic versions of the Ackley’s, Griewank’s and Rastrigin’s
functions. The results show that this configuration of the cooperative strategy is competitive with respect
to the state-of-the-art methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic Optimization Problems (DOPs) have attracted the
attention of the scientific community in the past decade due to its
closeness to real-world situations (trade market prediction, mete-
orological forecast, robotics motion control, etc. [1–3]). Solving this
type of problems is harder than their “static” counterparts because
of the presence of time-dependent properties that may affect the
fitness function, constraints, number of variables, their domain, etc.

It is not our purpose here to provide a literature review on
the topic (the interested reader is referred to [4] and the web-
site http://dynamic-optimization.org for more information) but
nowadays, most of the publications in this field consider some
assumptions for the resolution of DOPs:

• Changes in the problem can be detected.
• Time-dependent features vary gradually.
• Keeping a good track of the optima is more important than refin-

ing the quality of the solutions, especially when the frequency of
the changes is high.

∗ Corresponding author. Tel.: +34 673110419.
E-mail addresses: admase@decsai.ugr.es (A.D. Masegosa), dpelta@decsai.ugr.es

(D. Pelta).

• A population of solutions may better track the changes than a
unique solution.

Under these assumptions, it is not strange that most of the
research is concentrated around population-based methods [2,5]
where each member of the population can be considered as an
“agent” in a wide sense. For example, an agent could be a very
simple entity as a solution (an individual in the case of Evolution-
ary Algorithms [6,7] or a particle in PSO [8,9]), or a more complex
object like a local search operator (mutation operator [10] or a full
Tabu Search method [11]).

While methods composed by low-complexity agents are widely
extended in DOPs, the use of more sophisticated agents has been
less explored. The present work focuses on this last topic and
concretely on cooperative strategies where the agents implement
trajectory-based algorithms.

Having in mind the need for more competitive methods for solv-
ing DOPs, this paper pursues two main objectives. The first one
is to analyze two of the features with a higher influence on the
performance of cooperative strategies:

• The number of agents composing the strategy, the so called car-
dinality.
• The Neighborhood Sampling Strategy (NSS) implemented by the

agents.

1568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.asoc.2013.08.006

dx.doi.org/10.1016/j.asoc.2013.08.006
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2013.08.006&domain=pdf
http://dynamic-optimization.org
mailto:admase@decsai.ugr.es
mailto:dpelta@decsai.ugr.es
dx.doi.org/10.1016/j.asoc.2013.08.006

578 A.D. Masegosa et al. / Applied Soft Computing 14 (2014) 577–593

To carry out this study, we depart from the approach proposed in
[12] where the authors presented a cooperative strategy composed
by a set of Tabu Search agents that are controlled by a rule-based
central coordinator. In this contribution, the strategy uses the same
type of agent.

To evaluate the influence of the cardinality (first feature), we
test various configurations with different number of agents. For
the second feature, we consider that all the agents can use the
same or different NSS’s, leading to a homogeneous or a hetero-
geneous composition, respectively. The analysis is done evaluating
different pairs {cardinality, composition} over the well-known
Moving Peaks Benchmark [1] and dynamic versions of the Ackley’s,
Griewank’s and Rastrigin’s continuous optimization functions.

The second objective of the paper is to assess the performance
of the best pair {cardinality, composition} by comparing it versus
state-of-the-art algorithms for continuous DOPs.

It is important to remark that we will only consider DOPs having
changes in the objective function.

This work extends the research presented in [11–13], where the
same cooperative strategy was used. In the first one, the aim was to
study the performance of trajectory-based agents in DOPs as well as
the benefits of cooperation; the second work focused on the analy-
sis of different coordination schemas with distinct control rules for
this cooperative strategy; and the last paper provided a comparison
of several state-of-the art algorithms for DOPs that included this
cooperative strategy, emphasizing the comparison methodology
and the visualization of the results.

The paper is structured as follows. Section 2 describes the coop-
erative strategy, the Tabu Search implemented by the agents and
the NSS’s proposed. The experimental framework is in Section 3,
where the benchmark problems, the state-of-the-art methods, the
performance measures and the analysis techniques used are pre-
sented. Section 4 contains the results related with the first aim of
the paper while Section 5 shows the comparison of the best coop-
erative strategy obtained versus the state-of-the-art algorithms.
Finally, conclusions are given in Section 6.

2. A centralized cooperative strategy for Dynamic
Optimization Problems

As we stated before, the cooperative strategy used in this paper
was previously presented in [11,12]. In this section, we describe the
main aspects of this strategy, the Tabu Search method implemented
by the agents and the three Neighborhood Sampling Strategies con-
sidered. Further details of the strategy and the Tabu Search method
can be found in previous references.

2.1. Description of the cooperative strategy

The strategy consists of a set of agents guided by a central coor-
dinator [12] as shown in Fig. 1. The agents explore the search space
using a Tabu Search algorithm, periodically sending performance
reports to a coordinator which analyses them and readjusts the
behavior of the agents by sending orders to them. The orders indi-
cate the agents the point from which they should restart their
search, either to move them into more promising region or to
escape from a local minimum. The exchange of data is done using a
blackboard model [14]. Concretely, two blackboards are available,
one to send performance reports from the agents to the coordinator,
and another, to send orders from the coordinator to the agents.

Within the cooperative strategy, the coordinator and the agents
maintain certain information about the search (e.g. fitness of the
current solution, best solution found so far, etc.). When a change is
detected by any of the agents, the rest of them should be informed in
order to update or discard their search information. The mechanism

Fig. 1. Scheme of the cooperative strategy.

to detect changes and the system to communicate these changes
are described below.

An agent detects fitness function changes by reevaluating its
best solution found so far and checking whether its fitness has
changed or not. This action is done after each neighborhood explo-
ration to ensure early detection of changes. When an agent i detects
a change, it increases a counter cci (change counter), that stores
the number of changes detected so far (see Fig. 2). Then it will
send the cci value to the coordinator in the next report. The coor-
dinator also maintains a register, called ccglobal, with the highest
cci received so far. After receiving a report, the coordinator deter-
mines whether the agent has detected a new change (cci > ccglobal)
to update ccglobal; or if it has already perceived the current change
(cci = ccglobal) or not (cci < ccglobal). In the former case, the coordina-
tor notifies those agents that have missed the change to make all
the strategy’s components work with current information, as Fig. 2
illustrates.

Now, we can describe the cooperative strategy with the help of
Fig. 3. For the sake of clarity, we divide the description in agents
and coordinator:

2.1.1. Agents
At the beginning, the agents are initialized and run asyn-

chronously. Each agent first checks if it has received an order or
report from the coordinator. This report contains:

• Agent identification
• sreloc
• changeNotification

where sreloc can be either a solution from which the agent will
restart the search, or an empty value that will be ignored. Regarding
changeNotification, it is a boolean value set to True to inform the
agent that a new change was detected.

When the received report has changeNotification = True, the
agent updates its cci counter and restarts memories having “obso-
lete” information as: components of the optimizer (tabu list), the
fitness of the current solution, the best solution found so far (sbest)
and a list where it keeps the local minima found since the last report.
These local minima are solutions that could not be improved by the
agent after exploring the corresponding neighborhoods a certain
number of times. Before running the optimizer, the agent checks
if it has to relocate its search (sreloc /= ∅) and in this case, it sets its
current solution to sreloc. After a given number of fitness function
evaluations, the agent stops the search process, updates the memo-
ries, records the performance information in a report and sends it to
the coordinator. These performance reports include the following
information:

Download	English	Version:

https://daneshyari.com/en/article/495766

Download	Persian	Version:

https://daneshyari.com/article/495766

Daneshyari.com

https://daneshyari.com/en/article/495766
https://daneshyari.com/article/495766
https://daneshyari.com/

