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a  b  s  t  r  a  c  t

In  this  paper,  we  solve  the  optimal  power  flow  problem  using  by  the  new  hybrid  fuzzy  particle  swarm
optimisation  and  Nelder–Mead  (NM)  algorithm  (HFPSO–NM).  The  goal  of  combining  the  NM  simplex
method  and  the  particle  swarm  optimisation  (PSO)  method  is to integrate  their  advantages  and  avoid
their  disadvantages.  The  NM  simplex  method  is  a very  efficient  local  search  procedure,  but  its  convergence
is  extremely  sensitive  to  the selected  starting  point.  In  addition,  PSO  belongs  to the  class  of global  search
procedures,  but  it requires  significant  computational  effort.  In the  other  side,  in  the  PSO  algorithm,  two
variables  (˚1, ˚2)  are  traditionally  constant;  in  this  case,  due  to  the  importance  of  these  two  factors,
we  decided  to obtain  these  two as  fuzzy  parameters.  The  proposed  method  is  firstly  examined  on  some
benchmark  mathematical  functions.  Then,  it is  tested  an IEEE  30-bus  standard  test  system  by considering
different  objective  functions  for  normal  and  contingency  conditions  to solve  optimal  power  flow.  The
simulation  results  indicate  that  the  FPSO–NM  algorithm  is effective  in  solving  the mathematical  functions
and  the  OPF  problem.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Economic operation is one of the serious problems for all power
systems. Optimal power flow (OPF) is a powerful tool for the strate-
gic planning and operation of power systems. The solution of the
OPF problem leads to the selection of an objective function in
networks and generator operation constraints for economic and
safe operation [1,2].

Many optimisation techniques have been developed to solve
the OPF problem, which is a non-linear optimisation problem with
static constraints. In addition, the OPF problem has been consid-
ered in power system research because of the enhancement of
classical mathematics methods. The classical mathematics-based
programming methods, such as linear programming, non-linear
programming, quadratic programming (QP), the interior point
methods (IPMs) and the Newton-based method, have been com-
pletely investigated in the literature [3–5]. The OPF problem has
more than one local optimum because it is an extremely non-linear
and multi-modal optimisation problem. In addition, there are no
criteria to select a local optimum as the global optimum. Hence,
local optimisation techniques are not suitable for such optimisation
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problems. Therefore, conventional optimisation methods, which
are based on gradients and derivatives, are not able to determine
the global optimum.

Generally, the OPF problem is an optimisation problem with
a non-convex, non-smooth and non-differentiable objective func-
tion. Many intelligent optimisation methods have been developed
to overcome the above mentioned issues and limitations of the
classical methods for solving the OPF problem. A wide range of
evolutionary optimisation algorithms, such as the evolutionary
programming algorithm (EP) [6], improved evolutionary program-
ming (IEP) [7], the improved genetic algorithm (IGA) [8], simulated
annealing (SA) [9], Tabu search (TS) [10], differential evaluation
(DE) [11–14], modified differential evaluation (MDE) [15] and
biogeography-based optimisation (BBO) [16] have been used to
solve the OPF problem.

Recently, a novel optimisation algorithm called particle swarm
optimisation (PSO) has been presented to solve many optimisa-
tion problems of power systems [17–19], PSO belongs to the class
of global search procedures but requires significant computational
effort. The PSO algorithm is a population-based approach that
utilises a set of candidate solutions, called particles, that move
along the search space. The trajectory followed by each particle
is guided by the particle’s own memory and its interaction with
other particles. The specific method of adjusting the trajectory of
each particle is modelled after the means by which a flock of birds
or a school of fish interact with each other. This interaction is used
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in guiding the particles towards good minima in the search space
of the problem. At the end of the algorithm’s execution, a few of
the particles have converged to the optimal solutions. In addition,
the PSO algorithm has been applied to determine optimal power
flow [17,20]. Traditionally, in the PSO algorithm, two acceleration
variables (˚1, ˚2) are constant; in this case, due to the importance
of these two accelerations, we decided to obtain these two  as fuzzy
parameters [21].

It is an indubitable fact that for several problems a simple Evo-
lutionary algorithm might be good enough to find the desired
solution. As reported in the literature, there are several types of
problems where a direct evolutionary algorithm could fail to obtain
a convenient (optimal) solution [22]. This clearly paves way to the
need for hybridisation of evolutionary algorithms with other opti-
misation algorithms, machine learning techniques, heuristics etc.
Some of the possible reasons for hybridisation are as follows [23]:

1. To improve the performance of the evolutionary algorithm
(example: speed of convergence).

2. To improve the quality of the solutions obtained by the evolu-
tionary algorithm.

3. To incorporate the evolutionary algorithm as part of a larger
system.

Accordingly, all algorithms that search for an extremum of a cost
function perform exactly the same, when averaged over all possible
cost functions [24]. According to the Wolpert and Macready [24], if
algorithm A outperforms algorithm B on some cost functions, then
loosely speaking there must exist exactly as many other functions
where B outperforms A. Hence, from a problem solving perspective
it is difficult to formulate a universal optimisation algorithm that
could solve all the problems. Hybridisation may  be the key to solve
practical problems.

In recent years, BF–NM method has been used to solve engi-
neering optimisation problems [32]. Nelder and Mead proposed
the Nelder–Mead (NM) simplex and local search method, which
was designed to solve the constrained optimisation problem with-
out using gradient information. The NM simplex method is a very
efficient local search procedure, but its convergence is extremely
sensitive to the selected starting point. In this paper, the goal
of combining the PSO and NM methods is to integrate their
advantages and avoid their disadvantages [25]. The NM algorithm
exploits local information and converges to the nearest optimal
point [26], while the PSO algorithm belongs to the class of global
search procedures.

This paper introduces the application of the combination of
the fuzzy PSO and NM (HFPSO–NM) algorithms to solve the OPF
problem, which has not been previously applied to solve the OPF
problem in the literature. The remainder of the paper is organised
as follows. Section 2 describes the formulation of the OPF prob-
lem. In Section 3, the constraints and control and state variables
limits are presented, while Section 4 describes the fuzzy logic, PSO
method and NM approach followed by the details of the proposed
algorithm. Simulation results are presented in Section 5, and these
results are compared to other methods, that were used for solving
the OPF problem. Finally, the conclusion is presented in Section 6.

2. The OPF formulation and cost function

The OPF problem solution determines a certain objective func-
tion subject to various equality and inequality constraints [27].
Mathematically, the OPF problem can be presented as follows:

min  F(x, u)

subject to :

{
g(x, u) = 0

hmin ≤ h(x, u) ≤ hmax

(1)

where F(x, u), g(x, u) and h(x, u) are a cost function and the equal-
ity (power flow equations) and inequality (practical limit of control
and state variables) constraints, respectively. In addition, u and
x are control (independent variables) and state (dependent vari-
ables) variables, respectively. Generally, the control variables of
power systems are the output active power of generators except
the slack bus, the voltage of the generator bus, transformer taps,
phase shifters and the reactive compensator. In addition, the state
variables are the voltage magnitude of the load buses, the angle
magnitude of the buses, transmission line loading, the output reac-
tive power of generators and the active power of the slack bus.

3. Constraints of the OPF problem

Equality and inequality constraints have been considered for
solving the proposed OPF problem.

3.1. Equality constraints

Active and reactive power balance constraints are considered as
follows:

PGi − PDi −
n∑

j=1

∣∣Vi

∣∣ ∣∣Vj

∣∣ ∣∣Yij

∣∣Cos(�ij − ıi + ıj) = 0 (2)

QGi − QDi +
n∑

j=1

∣∣Vi

∣∣ ∣∣Vj

∣∣ ∣∣Yij

∣∣ Sin(�ij − ıi + ıj) = 0 (3)

where PGi, QGi are the active and reactive output powers of the gen-
erator at the ith bus. In addition, PDi, QDi are the active and reactive
output powers of the load at the ith bus, and

∣∣Yij and �ij are the
elements i − j of the admittance matrix.

3.2. Inequality constraints

These constraints satisfy the security and operational limits of
the power system; these constraints are expressed as follows:

3.2.1. Control variables limit
(1) Active power limits

Pmin
Gi ≤ PGi ≤ Pmax

Gi , i = 1, . . .,  GN (4)

where Pmax
Gi

, Pmin
Gi

are the maximum and minimum limits of the
active power for each generator, respectively. The number of
generators except at the slack bus is GN .

(2) Voltage magnitude limits

Vmin
i ≤ Vi ≤ Vmax

i , i = 1, . . .,  GN (5)

where Vi
max and Vi

min are the maximum and minimum voltage
of the generators, respectively.

(3) Tap changing transformers

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . .,  TN (6)

where Ti
max and Ti

min are the maximum and minimum of the
tap changing transformers, respectively. The number of tap
changing transformers is TN .

(4) Reactive power injection sources

Q min
ci ≤ Qci ≤ Q max

ci , i = 1, . . .,  CN (7)

where Qi
min and Qi

max are the minimum and maximum of the
reactive power injection sources, respectively. The number of
reactive power injection sources is CN .



Download	English	Version:

https://daneshyari.com/en/article/495770

Download	Persian	Version:

https://daneshyari.com/article/495770

Daneshyari.com

https://daneshyari.com/en/article/495770
https://daneshyari.com/article/495770
https://daneshyari.com/

