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a b s t r a c t 

Background and objective: A crucial step in a classification of electroencephalogram (EEG) records is the 

feature selection. The feature selection problem is difficult because of the complex structure of EEG sig- 

nals. To classify the EEG signals with good accuracy, most of the recently published studies have used 

high-dimensional feature spaces. Our objective is to create a low-dimensional feature space that enables 

binary classification of EEG records. 

Methods: The proposed approach is based on our theory of the ε-complexity of continuous functions, 

which is extended here (see Appendix ) to the case of vector functions. This extension permits us to 

handle multichannel-EEG records. The method consists of two steps. Firstly, we estimate the ε-complexity 

coefficients of the original signal and its finite differences. Secondly, we utilize the random forest (RF) or 

support vector machine (SVM) classifier. 

Results: We demonstrated the performance of our method on simulated data. We also applied it to the 

problem of classification of multichannel-EEG records related to a group of healthy adolescents (39 sub- 

jects) and a group of adolescents with schizophrenia (45 subjects). We found that the random forest 

classifier provides a superior result. In particular, out-of-bag accuracy in the case of RF was 85.3%. Using 

10-fold cross-validation (CV), RF gave an average accuracy of 84.5% on a test set, whereas SVM gave an 

accuracy of 81.07%. We note that the highest accuracy on CV was 89.3%. To compare our method with 

the classical approach, we performed classification using the spectral features. In this case, the best per- 

formance was achieved using seven-dimensional feature space, with an average accuracy of 83.6%. 

Conclusions: We developed a model-free method for binary classification of EEG records. The feature space 

was reduced to four dimensions. The results obtained indicate the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

An electroencephalogram (EEG) provides a direct measure of 

the electrical activities of the brain along the scalp. It is a rich 

source of information about the brain for healthy individuals and 

patients with neurological diseases. It permits quantitative evalua- 

tion of cognitive functioning and mental states [1] . EEG records are 

used in the brain–computer interface [2–4] for decoding intentions 

and their translation into commands and in diagnosing mental ill- 

nesses such as schizophrenia [1,5,6] . For a review of classification 

algorithms for the EEG-based brain–computer interface, see [7] . 

To obtain useful information from EEG data, feature extraction 

is necessary. In the literature, a whole set of quantitative estimates 

of the spectral and temporal features of the EEG signal have been 
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utilized (see, e.g., [8] ). In particular, there is an extensive literature 

on attempts to use these characteristics for schizophrenia diagno- 

sis (for a review and meta-analysis of such papers, see, e.g., [9] ). 

However, such an approach requires assumptions about the data 

generating mechanism, and there are no generally accepted mod- 

els on the data generation mechanism for EEG data. 

Another approach for feature selection is related to the funda- 

mental concepts of the modern theory of nonlinear dynamical sys- 

tems, such as entropy, correlation dimension D 2 , and the Lyapunov 

exponent (see, e.g., [10–13] ). These features can genuinely reflect 

the complexity of a mechanism for generating a signal, but only 

under the assumptions of stationarity and ergodicity of the signal. 

Due to the nature of EEG signals, these assumptions are not fully 

justifiable (see, e.g., [14,15] ). We also note that the entropy (and 

other “nonlinear”) measures of complexity are characteristics of 

the whole ensemble of trajectories and not individual sample paths 

of a stationary and ergodic stochastic process. Therefore, such mea- 
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sures cannot measure the “complexity” of the individual trajectory. 

Classification methods based on fractal dimension (Hausdorff di- 

mension, box-counting, and the Higuchi dimension) employ the 

idea of counting the numbers of simple sets covering graphs of 

functions (in the case of the Higuchi dimension, the trajectory’s 

length needs to be estimated as well). Those approaches require a 

considerable quantity of data and thus are much less economical 

than an approximation of the function by a set of known functions 

as is done in our approach via the concept of the ε-complexity. 

In addition, those methods are usually used for scalar functions 

(the Higuchi method cannot be extended to scalar functions of the 

vector argument), whereas our approach can be applied to vector 

functions of the vector argument. 

The majority of papers that report a high accuracy for the clas- 

sification of EEG signals use high-dimensional feature spaces and 

face the problem of overfitting (see, e.g., [16] ). It is recommended 

(see, e.g., [17] ) to use at least five to ten times as many training 

samples per class as the dimensionality of the feature space. 

In [18–20] , low-dimensional feature spaces were used for classi- 

fication of schizophrenic vs. control subjects based on EEG records, 

but they considered various types of experiments such as reactions 

to the stimuli; in our case, all the data were collected in the rest- 

ing state. 

In this paper, we propose a model-free approach for the fea- 

ture selection problem, one that assures good accuracy in low- 

dimensional feature space. In particular, we propose to apply the 

notion of the ε-complexity of continuous functions to the classifi- 

cation problem of multichannel-EEG records. 

In our approach, the complexity of an individual continuous 

function given by a discrete set of values is measured by the num- 

ber of function values on a uniform grid that is necessary to recon- 

struct the function with a given error by a given set of methods. 

The notion of ε-complexity is in line with Kolmogorov’s general 

idea of the “complexity” of an object. Such an approach was first 

tested for evaluation of functional states of the brain using EEG 

recordings in [21,22] . 

In 2012–2014 (see [23–26] ), the theory of the ε-complexity 

of continuous functions defined on a compact set in a finite- 

dimensional space was developed. This theory enabled us to de- 

velop a novel approach to the problems of segmentation and clas- 

sification of time series of an arbitrary nature. In this paper, we 

extend the theory of the ε-complexity of continuous functions to 

the case of continuous vector functions (see Appendix ). This exten- 

sion enables us to apply such an approach to the binary classifica- 

tion problem of EEG records. 

The paper is organized as follows. In Section 2 , we describe our 

method. In particular, in Section 2.1 we give a description of the 

notion of the ε-complexity of a vector function on a semantic level 

and provide a characterization of the ε-complexity for vector func- 

tions given by a finite set of values. In Section 2.2 , we provide an 

algorithm for estimation of the ε-complexity coefficients for multi- 

channel EEG records. In Section 2.3 , we describe our classification 

procedure. In Section 3 , we provide results of the simulations and 

apply our method to the classification of the EEG records of ado- 

lescents with schizophrenia and of healthy subjects. We also per- 

formed classification of the EEG data using the spectral features. 

In Section 4 , we provide conclusions and discuss our results. The 

Appendix provides the precise definition of ε-complexity and the 

theorem characterizing the complexity of Hölder vector functions. 

2. Method 

In this section, we give a description of the proposed method 

for classification of multichannel-EEG records. We will treat a 

multichannel-EEG record as a d -dimensional vector function x (t) = 

( x 1 (t) , . . . , x d (t) ) , where d is the number of channels, which is 

given on some fixed time interval t ∈ [0, T ]. 

Since modern recording equipment is digital, instead of a 

continuous vector function x ( t ) the researcher receives discrete 

samples ( x (0) , x (T /n ) , x (2 T /n ) , . . . , x (T ) ) , i.e., sequences of n d - 

dimensional vectors. Here, n = f T , where f is a sampling fre- 

quency (if the frequency is measured in hertz, i.e., times per sec- 

ond). For example, if T = 60 seconds and f = 128 Hz, the proce- 

dure produces 7680 d -dimensional vectors. Without loss of gener- 

ality, we can assume that max 
0 ≤k ≤n 

| x i (kT /n ) | = R i > 0 , i = 1 , 2 , . . . , d. 

2.1. Description of the ε-complexity of a continuous vector function 

Let us describe our notion of ε-complexity on the semantic 

level. The precise definition and formulation of the relevant the- 

orem are given in the Appendix . 

Firstly, we choose a number 0 < S < 1. From each component of 

a vector function { x i (kT /n ) } k = n 
k =0 

, i = 1 , . . . , d, we discard [(1 − S) n ] 

values(henceforth, the symbol [ a ] denotes the integer part of a 

number a ) in such a way that the remaining values are approxi- 

mately uniformly distributed. For example, if S = 0 . 5 , then even or 

odd values in each component of the function are discarded (for 

details, see the Appendix ). 

Assume we have some fixed collection F of approximation 

methods that can be used for the reconstruction of a continuous 

function by its values on some uniform grid. Employing the col- 

lection of methods F , we reconstruct the values of the i th compo- 

nent ( i = 1 , . . . , d) of the vector function in discarded points using 

the retained values of the function component. For each compo- 

nent, we find the method that reconstructs it with the minimum 

relative (in relation to R i , i = 1 , . . . , d) error. The error can be mea- 

sured in any norm because we are dealing with a finite set of val- 

ues. Denote the value of the minimum relative reconstruction error 

in the i th component by ε i ( S ) and find the value ε(S) = 

∑ d 
i =1 εi (S) . 

We define the (ε, F ) -complexity of continuous vector function 

x ( t ), which is given by its values on the uniform grid, as (− log S) . 

(Hereafter, we write the ε-complexity.) In other words, the ε- 

complexity of a vector function is the negative logarithm of the 

relative fraction of their values required for its reconstruction by 

methods from the family F , with the relative error no greater than 

ε. In particular, it is “the shortest” description of the vector func- 

tion (see details in Appendix ). 

Let us consider the class of vector functions satisfying the 

Hölder condition. This means that for any ( t, s ) ∈ [0, T ] × [0, T ], for 

some constants L > 0 and p > 0 the following inequality holds: 

d ∑ 

i =1 

| x i (t) − x i (s ) | ≤ L | t − s | p . (1) 

This class of vector functions is very wide. In effect, it includes 

all vector functions that can be found in applications. 

The main idea of our classification method is as follows. For 

“almost all” vector functions satisfying the Hölder condition, in 

the case of a sufficiently rich family F of approximation meth- 

ods and a sufficiently large sample size n , there exist numbers 

0 < α( n ) < 1, 0 < β( n ) < 1, and α( n ) ≤ S ≤β( n ) (which depend on the 

vector function) such that the following equality holds: 

log ε ≈ A + B log S. (2) 

The precise meaning of the expression “almost any” and the 

symbol ≈ is given in the Appendix . The parameters A, B are called 

the ε-complexity coefficients . These ε-complexity coefficients will 

be utilized as features for the classification of multichannel-EEG 

records. 

These features are independent from the data generating mech- 

anism, and therefore our approach is model-free . In the scalar 
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