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a b s t r a c t 

Background and objective: The study follows the proposal of decomposing a given data matrix into a prod- 

uct of independent spatial and temporal component matrices. A multi-variate decomposition approach is 

presented, based on an approximate diagonalization of a set of matrices computed using a latent space 

representation. 

Methods: The proposed methodology follows an algebraic approach, which is common to space, temporal 

or spatiotemporal blind source separation algorithms. More specifically, the algebraic approach relies on 

singular value decomposition techniques, which avoids computationally costly and numerically instable 

matrix inversion. The method is equally applicable to correlation matrices determined from second order 

correlations or by considering fourth order correlations. 

Results: The resulting algorithms are applied to fMRI data sets either to extract the underlying fMRI com- 

ponents or to extract connectivity maps from resting state fMRI data collected for a dynamic functional 

connectivity analysis. Intriguingly, our algorithm shows increased spatial specificity compared to common 

approaches, while temporal precision stays similar. 

Conclusion: The study presents a novel spatiotemporal blind source separation algorithm, which is both 

robust and avoids parameters that are difficult to fine tune. Applied on experimental data sets, the new 

method yields highly confined and focused areas with least spatial extent in the retinotopy case, and 

similar results in the dynamic functional connectivity analyses compared to other blind source separa- 

tion algorithms. Therefore, we conclude that our novel algorithm is highly competitive and yields results, 

which are superior or at least similar to existing approaches. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Exploratory matrix factorization (EMF) techniques are unsuper- 

vised, data-driven approaches which are used to discover latent 

factors, also called sources or features, in the data [1–4] . Such tech- 

niques often provide alternative representations of large data sets 

such as, for example, functional imaging data. This transformed 

data often reveals underlying characteristics of the data sets un- 

der study. Hence these features are generally considered indicative 

of underlying processes or networks, and often serve classification 

purposes for discriminating different types of data. Especially func- 

tional magnetic resonance imaging (fMRI) experiments produce se- 

quences of images/volumes. Such data is then organized into a data 

matrix X where each row contains a volume, i.e., a complete 3 D 

scan of the brain. The intensities I ( x, y, z ) of the voxels within the 

volume are concatenated into a row vector by associating the spa- 
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tial voxel coordinates ( x, y, z ) with an index n . Each row of X with 

a total of N = s 1 × s 2 × s 3 voxels thus represents one volume scan, 

or a region of interest (ROI) in the total volume, and is associated 

with a time index m . A session involves a total of M scans, there- 

fore a session is represented by an M × N data matrix where M is 

related with the time domain and N is associated with the spatial 

domain. 

If instead of analyzing intensity distributions, we are inter- 

ested in dynamic functional connectivity aspects, the data matrix 

X is formed with Pearson correlation coefficients, which represent 

two-point correlations between time series resulting from pre- 

processing the fMRI data. Therefore, the raw data is often decom- 

posed into functional networks using a group level spatial ICA. The 

referred pre-processing step results in L independent spatial maps 

and the related time courses. These time courses are then sub- 

divided into short, partially overlapping segments, and L (L − 1) / 2 

correlation coefficients are computed between all time windows. 

These correlations vary over time, thus represent what is called dy- 

namic functional connectivity networks (dFCN). The rows of the data 

matrix are then formed by concatenating N = SP, e.g. S sessions 
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and P time points per session, correlation coefficients ρmm 

′ [ n ] , n = 

1 , . . . , N. 

The goal of exploratory matrix factorization techniques is to ap- 

proximate the original data matrix by the product of two matrices, 

which can be expressed as an outer product of K column W 

∗k and 

row H k ∗ vectors according to 

ˆ X = WH = W ∗1 H 1 ∗ + W ∗2 H 2 ∗ + . . . + W ∗K H K∗ (1) 

with 

W ∗k H k ∗ = 

⎛ 

⎝ 

w 1 k 

. . . 
w Mk 

⎞ 

⎠ ( h k 1 · · · h kN ) . (2) 

The original matrix is thus approximated by K outer products 

of factors related with the information contained in the space 

spanned by the column vectors W 

∗k and the space spanned by 

the row vectors H k ∗ . Moreover, each row of W and each column 

of H , respectively, form the coordinates of a new representation 

by which the information is encoded in a latent (hidden) space of 

dimension K . Note that in general no a priori knowledge about the 

factor matrices is available. 

The mathematical model described by Eq. (1) is also followed 

by the general linear model (GLM) widely used in fMRI data anal- 

ysis. The main difference is that the matrix W , now called de- 

sign matrix, represents the experimental manipulations and con- 

ditions which are assumed to be known. Therefore, GLM repre- 

sents a semi-knowledge-based approach [5] , where the unknown 

matrix H can be estimated by minimizing the Frobenius norm of 

the error matrix (X − ˆ X ) and 

ˆ X represents the estimate WH . In 

data-driven methods, applied to fMRI data sets X , both factor ma- 

trices ( W, H ) are estimated given only the measured data [6] . To 

achieve this goal, assumptions like orthogonality (singular value 

decomposition (SVD) or principal component analysis (PCA)), sta- 

tistical independence (independent component analysis (ICA) or 

blind source separation (BSS)), nonnegativity (non-negative ma- 

trix factorization (NMF)) and so on need to be applied. Indepen- 

dent Component Analysis (ICA) has been widely applied to fMRI 

data by imposing the independence constraint either to the spa- 

tial (rows of H ) domain (sICA) or the time (columns of W ) domain 

(tICA).Note that with sICA the matrix W is considered the mixing 

matrix, while with tICA this becomes the role of the matrix H . The 

sICA is more common due to the large dimensionality of the spa- 

tial domain when compared with the temporal domain. Moreover, 

if it comes to compare ICs across a group of subjects, group ICA [7–

9] has to be applied to get around the inherent permutation and 

scaling indeterminacies of ICA. And the latter leads to a set of inde- 

pendent spatial maps, which are visually analyzed to identify arti- 

facts like head movement or known structures in the brain (major 

blood vessels or the ventricles). Finally, the time courses, corre- 

sponding to valid independent spatial components, are selected to 

compute the dFCN data matrix. 

2. Spatiotemporal decomposition 

Early attempts to combine sICA and tICA can be found in 

[10] where sICA is used to select the regions of interest (ROIs), 

and then tICA is applied to the time series of those voxels to find 

temporal components. More generally, spatiotemporal approaches 

were also suggested [11] and [12] . In both works, a singular value 

decomposition (SVD) pre-processing step determines the dimen- 

sion of the latent space. Then a new transformation matrix is com- 

puted using both time and space components of the SVD decom- 

postion. In [11] , the independent components in the new latent 

space are computed by optimizing a contrast function via gradi- 

ent descent. In [12] , an algebraic joint approximative diagonaliza- 

tion (JAD) approach is considered after computing a set of matri- 

ces derived from time and space components. More recently [13] , a 

cascaded approach was proposed to compute independent compo- 

nents. Thereby, after applying sICA, a tICA is applied to the mixing 

matrix W of the spatial mixing model. In this proposal, there is an 

additional stage to visually identify and remove artifact related in- 

dependent spatial components. Then, the corresponding time com- 

ponents are regressed out of the non-artifact-related time compo- 

nents of the mixing model. Notice that the final model to approxi- 

mate the original data is presented as a product of three matrices, 

originating from the two step procedure. 

2.1. Motivation 

The Motivation of this study is to combine the work of 

[11] with an algebraic approach as proposed in [12] . Therefore, 

the transformation matrix, estimated in the latent space, is an or- 

thogonal matrix and both, temporal and spatial components, un- 

dergo a similar rotation. Both works have shortcomings, which 

are corrected for by our proposed combination. The algorithm in 

[11] employs many additional parameters resulting in a less ro- 

bust behavior, whereas the approach in [12] is an exact analyt- 

ical method. Nevertheless, the work of [12] uses pseudoinverses, 

which introduce a computationally costly and a random compo- 

nent to the algorithm. Furthermore, the pseudoinverses render the 

algorithm computationally instable because of possible degeneracy 

of the matrix columns. These shortcomings are accounted for in 

our proposed method, which is based on the well known and ro- 

bust eigenvalue decomposition. The performance of the method is 

illustrated with fMRI data sets to extract relevant information in 

different stages of the processing chain: a processing and a post- 

processing step. Nevertheless, the algorithm is generally suitable 

for spatiotemporal datasets irrespective of their origin and may 

have applications in many fields of science. 

2.2. Singular value decomposition 

Singular Value Decomposition (SVD) of the original data matrix 

X is the most widely used factorization technique that serves as a 

pre-processing step in most of the decomposition techniques. The 

matrix decomposition reads 

X = U �V 

T (3) 

If N > > M , the maximal number of non-zero singular values is 

M , and those form the entries of the M × M diagonal matrix �. 

The related eigenvector matrices, i.e. the M × M matrix U and the 

N × M matrix V , have M orthogonal columns. The SVD decomposi- 

tion may be re-written using the factorization model described in 

Eq. (1) by using only the K < M largest singular values and corre- 

sponding eigenvectors. This decomposition will lead to a low-rank 

approximation of the original data. The Frobenius norm of the er- 

ror of the approximation is related with the discarded singular val- 

ues 

‖ X − ˆ X ‖ F = 

√ 

M ∑ 

i = K+1 

�2 
ii 

(4) 

when the diagonal entries of � are assumed to be arranged in de- 

creasing order of magnitude. 

Now considering the decomposition given in Eq. (1) : 

• If a spatial decomposition (sBSS) is intended, then we identify 

W = U K �K and H = V 

T 
K 

. Note that here H is related to the un- 

derlying sources while W forms part of the mixing matrix of 

the model. 
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