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a b s t r a c t 

Background and objective: In computational neuroimaging, brain parcellation methods subdivide the brain 

into individual regions that can be used to build a network to study its structure and function. Using 

anatomical or functional connectivity, hierarchical clustering methods aim to offer a meaningful parcel- 

lation of the brain at each level of granularity. However, some of these methods have been only applied 

to small regions and strongly depend on the similarity measure used to merge regions. The aim of this 

work is to present a robust whole-brain hierarchical parcellation that preserves the global structure of 

the network. 

Methods: Brain regions are modeled as a random walk on the connectome. From this model, a Markov 

process is derived, where the different nodes represent brain regions and in which the structure can be 

quantified. Functional or anatomical brain regions are clustered by using an agglomerative information 

bottleneck method that minimizes the overall loss of information of the structure by using mutual infor- 

mation as a similarity measure. 

Results: The method is tested with synthetic models, structural and functional human connectomes and 

is compared with the classic k -means. Results show that the parcellated networks preserve the main 

properties and are consistent across subjects. 

Conclusion: This work provides a new framework to study the human connectome using functional or 

anatomical connectivity at different levels. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The human brain contains an extraordinary network of roughly 

one hundred billion neurons capable of sharing and processing in- 

formation efficiently. The connectome models these connections as 

a graph, where nodes represent brain areas and edges represent 

structural or functional connections [1,2] . To define the nodes, par- 

cellation methods are used to subdivide the brain cortex into dif- 

ferent regions according to a predefined criterion (i.e., cytoarchi- 

tecture, structure, function...). 

Atlas-based parcellation methods subdivide the brain by em- 

ploying a three-dimensional anatomical template [3] . This template 

can be based on cytoarchitecture, electrophysiological observations, 

cortical curvature patterns [4] , structural or functional connectivity 

profiles [5] , among others. A limitation of these methods is the lack 

of individuality as they are based on a sample dataset as opposed 

to the subject. 

On the other hand, connectivity-based parcellation methods sub- 

divide the brain into spatially coherent regions of homogeneous 

connectivity by grouping grey-matter voxels according to the sim- 

ilarity of their connectivity patterns [3] , obtained from diffusion 
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magnetic resonance imaging (dMRI) or functional magnetic reso- 

nance imaging (fMRI). The more popular methods are based on 

the k -means approach [6–8] , which groups voxels into k non- 

overlapping clusters using a similarity measure. The main issues 

with these methods are the definition of the number of clusters a 

priori and the reliance on initial random sampling, as it has been 

shown that iterative repetitions of the same method may lead to 

different results [9] . To overcome these limitations, and assuming 

that brain networks have hierarchical properties [10,11] , several hi- 

erarchical clustering methods that compute a parcellation at each 

level in the hierarchy have been proposed [12–15] . These meth- 

ods obtain brain parcellations at multiple granularities without the 

need to define the number of clusters. 

Connectivity-based methods are strongly dependent on the 

similarity measure used by the algorithm. Gorbach et al. [13] pro- 

posed a hierarchical method that clusters voxels using the mutual 

information between tractograms, and obtained promising results 

for specific regions of the brain. The use of mutual information as a 

similarity measure is, therefore, an effective solution to group vox- 

els. However, Gorbach et al.’s method [13] assumes that the whole 

cluster can be represented by only one tractogram. 
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1.1. Our approach 

In this paper, we present a hierarchical parcellation method 

that preserves the structure of brain network with no need to 

define representative tractograms. We model brain networks as a 

random walk on the connectome by using the structural or func- 

tional connectivity matrix. From this model, we quantify the brain 

structure. Brain regions are clustered by applying a bottom-up hi- 

erarchical method based on the information bottleneck using a 

control process [16] . We evaluate the parcellation method by us- 

ing synthetic, structural, and functional brain networks at different 

scales. The robustness of the method is tested by doing multiple- 

subject comparisons with the resulting vector of hierarchical clus- 

ters. 

2. Method 

In this section, we propose a new method to parcellate the 

brain. First, we introduce a brain model based on a Markov pro- 

cess. Then, we describe the parcellation method, which uses the 

information bottleneck-based method. Additionally, we describe a 

measure based on mutual information which is used to perform 

pairwise group comparisons. 

2.1. Markov process-based brain model 

A brain network can be modeled as a graph with a pair of sets 

G = (V, E) , where V represents the set of v brain regions, denoted 

by { V 1 , . . . , V v } , and E the set of e edges between two nodes of V , 

that denotes their anatomical or functional connectivity. This graph 

can be represented by a connectivity matrix C with v × v elements, 

where C ij gives the connectivity weight between node i and node 

j . 

In this paper, we propose to model a brain network as a Markov 

process X = { X 0 , X 1 , . . . , X t , X t+1 , . . . } , which represents a random 

walk of a particle moving from one brain region to another. From 

this model, we can define a probability density function p(X t ) = 

{ p(x t 
1 
) , . . . , p(x t 

i 
) , . . . , p(x t v ) } , where p(x t 

i 
) represents the probabil- 

ity that a particle takes the value x i (i.e. the particle is in the brain 

region i ) at state X t (i.e. at time step t ). This particle randomly 

moves from a node x i to node x j according to the connectivity or 

probability defined in the transition probability matrix, whose ele- 

ments are given by 

p(x t+1 
j 

| x t i ) = 

C i j 

C i 
, (1) 

where C i j = C ji , ∀ i, j and C i = 

∑ 

i C i j is the total weight of the edges 

emanating from node x i . The transition probability p(x t+1 
j 

| x t 
i 
) de- 

fines the probability of being in node x j after visiting node x i . Note 

that the transition probability depends only on the current state 

and not on the previous ones. 

The transition probabilities can be used to define the transition 

distribution from each node x i , which is given by 

p(X t+1 | x t i ) = { p(x t+1 
1 | x t i ) , . . . , p(x t+1 

j 
| x t i ) , . . . , p(x t+1 

v | x t i ) } 

= 

{
C i 1 
C i 

, . . . , 
C i j 

C i 
, . . . , 

C i v 
C i 

}
. (2) 

This distribution represents the overall probability of a particle 

to be in a different node after visiting node x i . 

The probability of being in node x i can be defined by a station- 

ary distribution [17] . In this case, for undirected brain networks, 

the stationary distribution is given by 

p(x i ) = 

C i 
C T 

, (3) 

where C T = 

∑ 

i 

∑ 

j C i j is twice the sum of the weights 

of all the edges [17] . The stationary distribution, p(X t ) = 

{ p(x 1 ) , . . . , p(x i ) , . . . , p(x v ) } , defines the probability of a particle to 

be in each of the nodes. Note that the stationary distribution of a 

node is proportional to the total weight of the edges emanating 

from that node. 

2.2. Mutual information as a measure of brain structure 

Mutual information (MI) is a well-known measure that quanti- 

fies the shared information between two different variables X and 

Y defined as 

I(X ;Y ) = H(X ) − H(X | Y ) 
= 

∑ 

x ∈X 

∑ 

y ∈Y 
p(x, y ) log 

p(x, y ) 

p(x ) p(y ) 
, (4) 

where H(X ) = − ∑ 

x ∈X p(x ) log p(x ) is the Shannon entropy of X 

and measures the uncertainty of the variable X , and H(X| Y ) = 

−∑ 

y ∈Y p(y ) 
∑ 

x ∈X p(x | y ) log p(x | y ) is the conditional entropy and 

measures the average uncertainty associated with X if we know the 

outcome of Y . In our approach, we use the MI measure to quan- 

tify the shared information or similarity between two states of a 

Markov chain, i.e. I(X t ; X t+1 ) . 

For a stationary Markov chain, the MI between consecutive 

states, I(X t ; X t+1 ) , coincides with the excess entropy [18,19] , which 

is a measure of system structure. We use this measure to quan- 

tify the structure of the networks. High values of MI will indi- 

cate that there is a high correlation between consecutive states 

and, therefore, that the brain is highly structured. Mutual informa- 

tion can also be seen as the difference between the uncertainty 

of the states without any prior knowledge and the uncertainty of 

the states when the past is known (or information gained when 

the previous node is known). Therefore, the higher the MI, the less 

random the connections. 

2.3. Parcellation method 

The goal of our parcellation method is to cluster the brain re- 

gions, represented as different states of a Markov chain, by mini- 

mizing the loss of information when two regions are merged, the 

effect of which is to maintain the overall structure. The agglomer- 

ative information bottleneck method , proposed by Thisby et al. [20] , 

clusters a random variable X depending on a random variable Y by 

minimizing the loss of mutual information. Gorbach et al. [13] used 

this method to preserve the maximum information between the 

representative tractogram and all the tractograms that belonged 

to the same cluster. However, in our brain model, we want to 

preserve the maximum information between brain regions, rep- 

resented as consecutive states ( X t and X t+1 ) of a Markov process 

X instead of two different variables X and Y . In this case, when 

two nodes of the Markov process are merged, both X t and X t+1 are 

modified. Due to this limitation, the classic agglomerative informa- 

tion bottleneck method cannot be used. Thus, we use the extended 

version of the algorithm presented in [16] , which takes this fact 

into consideration and enables to cluster a random variable X de- 

pending on a Markov process. 

The method starts by assigning each node (or brain region) 

to a different cluster, with a total of v clusters. In the first step, 

the loss of mutual information due to a possible merge of every 

pair of nodes ( x i , x j ) is calculated. The MI loss is computed as the 

difference of mutual information between two consecutive states 

I(X t ; X t+1 ) , when nodes x i and x j belong to different clusters, and 

the mutual information I( ̂  X t ; ̂ X t+1 ) when nodes x i and x j have been 
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