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Background and objectives: We introduce the R-package GenomicTools to perform, among others, a Multi- 

factor Dimensionality Reduction (MDR) for the identification of SNP-SNP interactions. The package further 

provides a new class of tests for an (exploratory) Quantitative Trait Loci analysis that overcomes some of 

the limitations of other popular (e)QTL approaches. Popular (e)QTL approaches that use linear models or 

ANOVA are often based on over-simplified models that have weak statistical properties and which are 

not robust against outlying observations. 

Method: The algorithm to calculate the MDR is well established. To speed up its calculation in R, we 

implemented it in C++. Further, our implementation also supports the combination of several MDR results 

to an MDR ensemble classifier. The (e)QTL test procedure is based on a generalized Mann-Whitney test 

that is tailored for directional alternatives, as they are present in an (e)QTL analysis. 

Results: Our package GenomicTools provides functions to determine SNP combinations that have the 

highest accuracy for a MDR classification problem. It also provides functions to combine the best MDR 

results to a joined ensemble classifier for improved classification results. Further, the (e)QTL analysis is 

based on a solid statistical theory. In addition, informative visualizations of the results are provided. 

Conclusion: The here presented new class of tests and methods have an easy to apply syntax, so that 

also researchers inexperienced in R are able to apply our proposed methods and implementations. The 

package creates publication ready Figures and hence could be a valuable tool for genomic data analysis. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The R-package GenomicTools adds another tool to the statisti- 

cal toolbox for the analysis of genomic data. With the advent of 

next-generation data and the perpetual price decline, full genome 

RNA- and DNA-seq data is widely available for many researchers 

and the demand for sound and easy to use methods is high. Al- 

ready during the peak of the SNP-chip and microarray era, the 

need to combine Single Nucleotide Polymorphism (SNP) data with 

gene expression data was high and resulted in the development 

of analysis methods for Quantitative Trait Loci (QTL) [1] respective 

expression Quantitative Trait Loci (eQTL) [2] . The most commonly 

used command-line tool to calculate (e)QTLs is plink [3] , but also 

commercial software like, e.g. Goldenhelix SVS8 or CLC workbench 

provide functions to calculate (e)QTLs. For R [4] , there is the R/qtl 

[5] project active, for details see [6] . Also the package MatrixEQTL 

[7] is tailored for eQTL analysis. 
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In [8] we presented a robust, non-parametrical test for direc- 

tional alternatives as they are also present in the (e)QTL analy- 

sis and the basic testing functions are available in the R-package 

gMWT [9] . The here presented R-package GenomicTools uses the 

testing functions and places them into a user-friendly framework 

for genomic data analysis. Besides the identification of significant 

associations between SNPs and gene expressions respective with 

phenotypes, the package also provides functions to visualize the 

results. 

The second focus of our package is the Multifactor Dimension- 

ality Reduction (MDR), for a review on MDR see [10] or for a more 

recent one [11] . An MDR analysis can be used to identify interac- 

tions among (discrete) variables to predict a target variable. The 

discrete variables can be either SNPs, or any other categorical vari- 

able, like diabetes, smoking, etc. The predicted target variable is 

then usually binary like for example in case of a case/control study. 

There are already existing tools to calculate the MDR, e.g. there is 

a stand-alone Java tool available to calculate the MDR [12] . Within 

R, the package MDR [13] provides functions to calculate the MDR. 

Further, the R-package mdmdr [14] provides also functions to apply 
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MDR for binary traits in case-control studies as well as for quanti- 

tative traits for unrelated individuals. 

2. Models and computational methods 

2.1. MDR 

The MDR is a method for the analysis of the interaction of two 

or more categorical variables with a target variable and was intro- 

duced by Ritchie et al. [15] . The MDR is especially useful for the 

analysis of the interaction of SNPs with certain traits or with other 

genes. The gene-gene interaction is also called epistasis and is as- 

sumed to play a major role in the genetics of common diseases 

[16] . Hence, the detection of gene-gene interaction is an important 

step in the characterization of such diseases. The MDR method was 

developed to identify such interactions and is described e.g. in [17] . 

The basic principle of an MDR analysis is to create for k -tuples 

of factors k -dimensional frequency tables, assign the observations 

into the corresponding cells and use them to determine risk classes 

for each cell. For the sake of simplicity we will describe the case of 

a two-fold interaction, cases with larger k ’s are then easily derived. 

Let’s consider a set of measured genotypes at L loci G l with l = 

1 , . . . , L . Further, let X h be a set of H healthy individuals and X c a 

similar set of cases of size C . For each individual in X h and X c the 

genotype information at each loci G l are available. 

In case of a two-fold interaction, all pairwise combinations 

G l ,l ∗ = (G l , G l ∗ ) with l � = l ∗ are then considered. For each combi- 

nation G l ,l ∗ of two loci their corresponding three possible geno- 

types AA, Aa and aa form two-dimensional 3 × 3 frequency tables 

T l ,l ∗ . The individuals from X h and X c are then assigned to separate 

frequency tables T l ,l ∗;h and T l ,l ∗;c , according to the corresponding 

pairwise genotype information. Then, the cell-wise ratios between 

T l ,l ∗;h and T l ,l ∗;c are calculated and cells respective genotype com- 

binations, are labelled either as ‘high-risk’ or ‘low-risk’, depending 

on the value of the ratio of cases and healthy individuals in the 

cell. Usually, if the value of the cell ratio is larger than the ratio 

of the sizes C / H of the two sets, a cell is labelled to be of high 

risk, indicating an over representation of cases for that particular 

genotype combination. 

Based on the high-/low-risk labels of each cell, all individu- 

als are then classified and compared to the real class labels. This 

way, for each combination G l ,l ∗ we get the amount of false pos- 

itives (FP), false negative (FN), true positive (TP) and true nega- 

tive (TN) classifications. Further we can calculate the sensitivity 

(true positive rate) as TPR = TP/(TP+FN) and the specificity (true 

negative rate) as TNR = TN/(TN+FP). A useful overall criteria is then 

the accuracy (ACC) as an average of TPR and TNR calculated as 

ACC = (TPR+TNR)/2. The tuple G l ,l ∗ with the highest accuracy is 

then reported as the best possible combination c . 

The concept of MDR can be further extended and can be used 

as an ensemble classifier. For that, not only the best tuple is con- 

sidered, but a larger set of the e best k -tuples, denoted as C = 

(c 1 , . . . , c e ) . A new set of observations is then not only classified 

by the best tuple, but from every tuple in C , providing e classifi- 

cations. For the e classifications different statistics can then be cal- 

culated, like e.g. the average over all classification results. This av- 

erage can then be interpreted as likelihood of being diseased. This 

concept works in a similar way as decision trees are combined in 

a random forest and a trained MDR ensemble might be a powerful 

classifier. To our knowledge, MDR has not yet been used as ensem- 

ble classifier and further theoretical considerations are required. 

2.2. (e)QTL 

The (e)QTL analysis is a standard procedure in genomic data 

analysis to associate genotypes with either gene expressions (eQTL) 

or with phenotypes (QTL) and a couple of different statistical 

methods have been proposed to calculate such associations. How- 

ever, the most widely used single-marker method is to fit a lin- 

ear model to the data. In an eQTL analysis the expression val- 

ues of a target gene are assigned to the three genotype groups 

AA, Aa and aa of each SNP s = 1 , . . . , S in a surrounding area of 

that gene. For an eQTL analysis, let x g = (x 1 ;g , x 2 ;g , . . . , x n ;g ) ′ be 

the vector of n expression values of a specific gene g . In case of 

a QTL, x g are the numerical representations of some phenotype. 

We define then the vectors x 0 ;g,s = (x 01 ;g,s , . . . , x 0 n 0 ;g,s ) 
′ , x 1 ;g,s = 

(x 11 ;g,s , . . . , x 1 n 1 ;g,s ) 
′ and x 2 ;g,s = (x 21 ;g,s , . . . , x 2 n 2 ;g,s ) 

′ , as the vectors 

of expression values of gene g assigned to the three genotype 

groups AA (= 0) , Aa (= 1) and aa (= 2) of one particular SNP s . The 

numerical representations 0,1,2 of the genotypes account then for 

the number of wild-type alleles, but is rather an arbitrary assign- 

ment. Further, denote the cumulative density functions (cdf) of 

x 0; g, s , x 1; g, s and x 2; g, s as F 0; g, s , F 1; g, s and F 2; g, s . 

The dimensions of the three vectors x 0; g, s , x 1; g, s and x 2; g, s 

correspond to the amount of individuals n 0 , n 1 and n 2 that have 

the certain genotype in that particular SNP s and it is n 0 + n 1 + 

n 2 = n . The values of n 0 , n 1 and n 2 naturally depend on s , but to 

keep the notation concise we skipped that additional index. 

The null hypothesis for each pair g and s we have then usually 

in mind is 

H 0 : F 0 ;g,s ≡ F 1 ;g,s ≡ F 2 ;g,s . 

Different approaches test now for different alternatives with cer- 

tain assumptions. In the commonly used linear model F 0; g, s , 

F 1; g, s , F 2; g, s are assumed to be cdf’s of N ( μ, σ 2 ), N(μ + �, σ 2 ) 

and N(μ + 2�, σ 2 ) and the testing problem at hand is then H 0 : 

� = 0 vs. H 1 : � � = 0. 

In case of an ANOVA these assumptions are relaxed and F 0; g, s , 

F 1; g, s , F 2; g, s are cdf’s of N ( μ0 , σ
2 ), N ( μ1 , σ

2 ) and N ( μ2 , σ
2 ). Here, 

the testing problem is H 0 : μ0 = μ1 = μ2 vs. H 1 : μi � = μj for at 

least one pair i � = j . 

Our fully-non-parametrical approach based on a generalized 

Mann–Whitney test [8] has no further assumptions about parame- 

ters of F 0; g, s , F 1; g, s and F 2; g, s and we use the null hypothesis that 

we had initially in mind. The two different alternatives we consider 

are then 

H 1 : F 0 ;g,s < st F 1 ;g,s < st F 2 ;g,s 

H 2 : F 2 ;g,s < st F 1 ;g,s < st F 0 ;g,s , 

where < st refers to stochastical ordering of cdf’s. These directional 

alternatives are a natural approach, as in case of an (e)QTL the ex- 

pression values of the heterozygous genotype group Aa are clearly 

assumed to be between those of the homozygous cases AA and aa . 

A classical test that would lead almost to the same results is the 

Jonckheere-Terpstra test. The test we use here for the eQTL is im- 

plemented in our R-package gMWT [9] that is available on CRAN 

as well. The test statistic is based on the triple sum 

T S g,s = 

n 0 ∑ 

i =1 

n 1 ∑ 

j=1 

n 2 ∑ 

k =1 

I (x 0 i ;g,s < x 1 j;g,s < x 2 k ;g,s ) 

of the expression values of the three genotype groups, where I( ·) 
is the indicator function that is 1 if the condition ( ·) is true and 0 

if not. 

This test is then performed for every SNP in a window around 

the target gene. Depending on the window size of the surrounding 

area, eQTLs are denoted as cis- or trans- eQTL. Hence, the amount 

of performed tests per gene can vary between hundreds in the cis- 

case to hundreds of thousands in the trans- case. Our method uses 

by default permutation type tests and hence is slower to compute 

than the popular linear model or ANOVA approach. This drawback 
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