
Computer Methods and Programs in Biomedicine 150 (2017) 97–105

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Massively parallel simulator of optical coherence tomography of

inhomogeneous turbid media

Siavash Malektaji a , Ivan T. Lima Jr. b , Mauricio R. Escobar I. a , Sherif S. Sherif a , ∗

a University of Manitoba, Department of Electrical and Computer Engineering, 75A Chancellor’s Circle, Winnipeg, Manitoba R3T 5V6, Canada
b North Dakota State University, Department of Electrical and Computer Engineering, 1411 Centennial Boulevard, Fargo, ND 58108-6050, USA

a r t i c l e i n f o

Article history:

Received 31 March 2016

Revised 31 July 2017

Accepted 7 August 2017

Keywords:

Optical coherence tomography

Light propagation in tissue

Parallel processing

a b s t r a c t

Background and objective: An accurate and practical simulator for Optical Coherence Tomography (OCT)

could be an important tool to study the underlying physical phenomena in OCT such as multiple light

scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue,

using Monte Carlo methods. The main drawback of these earlier simulators is the long computational

time required to produce accurate results. We developed a massively parallel simulator of OCT of inho-

mogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic

scattered photons, and Class II diffusive reflectivity due to multiply scattered photons.

Methods: This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), us-

ing the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the

parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a

tetrahedron-based mesh and uses an advanced importance sampling scheme.

Results: This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two

orders of magnitude. To demonstrate this result, we have compared the computation times of our new

parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have

shown that our parallel implementation reduced simulation time of OCT of the first sample medium from

407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16

GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h

by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards.

Therefore our new parallel simulator is considerably more practical to use than its central processing unit

(CPU)-based counterpart.

Conclusions: Our new parallel OCT simulator could be a practical tool to study the different physical

phenomena underlying OCT, or to design OCT systems with improved performance.

© 2017 Published by Elsevier Ireland Ltd.

1. Introduction

An increasing number of biomedical applications greatly bene-

fit from optical coherence tomography (OCT) imaging [1–8] . This

high-resolution, non-invasive technique is ideal for, but not limited

to, imaging soft tissues. Further studies of the underlying physical

phenomena and design of novel OCT systems could be carried an-

alytically or through experiments. However, a practical computer

simulator of such systems could enable and/or facilitate such ef-

forts. In this paper, we describe a massively parallel simulator of

OCT, (which we call OCT-MPS) of inhomogeneous turbid media us-

ing a graphics processing unit (GPU) that is more than one order

∗ Corresponding author.

E-mail address: Sherif.Sherif@umanitoba.ca (S.S. Sherif).

of magnitude faster than its central processing unit (CPU)-based

counterpart [9] .

Due to its accuracy and applicability to arbitrary media, Wil-

son and Adam introduced the Monte Carlo (MC) method to solve

the Radiative Transport Equation (RTE) that has become a widely

accepted approach to model photon migration in tissue [10] . Later

Wang et al. [11] , developed a well-known MC simulation of light

transport in multilayered turbid media (MCML). A broad review of

methods to simulate light transport in turbid media can be found

in Zhu and Liu [12] .

The first MC simulator of OCT imaging was introduced by

Smithies et al. in 1998, but it was limited to OCT signals from

single layered media [13] . In 1999, Yao and Wang developed an

MCML-based simulator of OCT of multilayered media that used

an importance sampling method to reduce the variance of sim-

ulated OCT signals from a narrow tissue slice [14] . Lima et al.

http://dx.doi.org/10.1016/j.cmpb.2017.08.001

0169-2607/© 2017 Published by Elsevier Ireland Ltd.

http://dx.doi.org/10.1016/j.cmpb.2017.08.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2017.08.001&domain=pdf
mailto:Sherif.Sherif@umanitoba.ca
http://dx.doi.org/10.1016/j.cmpb.2017.08.001

98 S. Malektaji et al. / Computer Methods and Programs in Biomedicine 150 (2017) 97–105

improved this simulator by introducing an advanced importance

sampling scheme that decreased the computation time of OCT sig-

nals from multilayered tissue by two orders of magnitude [15,16] .

In 2007, Kirillin et al. developed a simulator of OCT of non-planar

multilayered media [17] . In this approach, the boundaries of layers

inside the media were modeled as mathematical functions, e.g., si-

nusoidal functions. This simulator has been used to simulate OCT

imaging of human enamel in which its boundaries were modeled

as non-parallel planes [7] . Dolganova et al. used this simulator by

Kirillin et al. to simulate OCT images of skin with dysplastic nevus

[18] . Moreover, Shlivko et al. used this simulator to analyze the

structure and optical parameters of layers of skin with thick and

thin epidermis [19] . Kirillin et al. also used this simulator to ana-

lyze the Speckle statistics in OCT signals. Using the Monte Carlo

simulation and experimental results, they showed that Speckle

could be modeled with Gamma distribution [20] . Periyasamy and

Pramanik developed a Monte Carlo simulator for OCT of multilay-

ered media with embedded objects (such as a sphere, cylinder, el-

lipsoid, and cuboid) [21] and used importance sampling to reduce

the computation time of simulations [22] . In his Ph.D. thesis, Sinan

Zhao has developed a Monte Carlo based TD-OCT and FD-OCT sim-

ulator [23] . To model media with complex geometry, he subdivided

media into cuboidal voxels. He used importance sampling and par-

allelization to reduce the computation time of his simulator. The

disadvantage of using cubical voxel is its inaccuracy in the esti-

mation of the specular (i.e., Fresnel) reflection from tilted surfaces

[23] .

Recently an MC-based simulator of OCT of inhomogeneous tur-

bid media with arbitrary spatial distributions was introduced by

Malektaji et al. [9] . In this OCT simulator, an arbitrary object was

represented as a tetrahedron mesh that could model an arbitrary

shape with any desired accuracy. An advantage of using tetrahe-

drons as the building blocks of an arbitrary object is that it mini-

mizes the computation cost of OCT simulation compared to other

possible building blocks [9] . This tetrahedron mesh could be ob-

tained using mesh generator applications such as NETGEN [24] .

Even though Malektaji et al. used an advanced importance sam-

pling scheme to reduce computations, simulation of a B-scan of a

sphere inside a slab, using 10 7 photon packets, required approx-

imately 360 h on a typical central processing unit (CPU) -based

desktop computer [9] .

In this paper, we describe a massively parallel implementation

of the CPU-based simulator described in [9] ; this parallel imple-

mentation resulted in a reduction of simulation time by more than

one order of magnitude. Therefore, it would be considerably more

practical to use our new parallel implementation, i.e., OCT-MPS,

compared to its CPU-based counterpart. Our massively parallel im-

plementation runs on graphics processing units (GPUs), using the

Compute Unified Device Architecture (CUDA) platform and pro-

gramming model by NVIDIA [25] . In the following sections, we give

an overview of the core concepts of parallel programming with

CUDA before explaining in detail the parallel implementation of

our simulator. Also, we describe the simulation of OCT imaging of

inhomogeneous objects, our GPU memory utilization and our gen-

eration of parallel random numbers. We also provide portability

guidelines for running our simulator on different CUDA GPUs. Fi-

nally, we present simulation results of OCT of nonplanar inhomo-

geneous media with arbitrary shapes and discuss the reduction in

computation time.

2. Simulation of OCT signals from of an inhomogeneous object

Following the procedure to simulate OCT signals from an ob-

ject consisting of arbitrary shaped regions, in [9] , each region

is defined with its optical parameters; scattering coefficient μs ,

absorption coefficient μa , refractive index n , and an anisotropy

factor g . Simulation of light propagation is modeled with a num-

ber of photon packets undergoing a random walk inside this object.

During such random walks, the photon packets experience absorp-

tion and scattering events, where one photon packet splits into two

packets traveling in different directions. To simulate OCT signals, a

large number of photon packets are launched with the same ini-

tial position representing a thin beam incident perpendicular to

the surface of the medium. The photon packets are traced inside

the medium according to the rules described in references [11 , 14].

The flowcharts of the process of tracing photon packets inside the

medium are shown in Fig. 1 .

A collecting fiber, with a specific acceptance angle, θmax , and

radius, d max , is located at the top of the medium to detect

backscattered photons. The photons are collected by the fiber

probe if their angle and position are within the acceptance angle

of the probe. Three types of photons are collected from a depth

z by the fiber: (1) ballistic photons that are single scattered, (2)

quasi-ballistic photons that are multiply scattered within the co-

herence length of the optical source, and (3) multiply scattered

photons beyond the coherence length of the optical source. Ballis-

tic and quasi-ballistic photons contribute to Class I diffusive reflec-

tivity. The multiply scattered photons beyond the coherence length

contribute to Class II diffusive reflectivity. It has been shown that

Class II diffusive reflectivity is the main limiting factor in imaging

depth of OCT [26,27] .

3. Implementation of our OCT massively parallel simulator

The implementation of our OCT massively parallel simulator

(OCT-MPS) addresses the high computational load of processing

a typically large number of samples required for a suitable ac-

curacy. In our simulator, a large number of samples, i.e., photon

packets, are launched simultaneously and traced independently.

Thus, we should expect a considerable reduction in computation

time due to parallel implementation. In this Section, we describe

the CUDA programming environment, the design and implementa-

tion of OCT-MPS, including photon packet tracing, random number

generation, and memory utilization. We also discuss its portability

across different GPUs.

3.1. CUDA programming environment

Compute Unified Device Architecture (CUDA) is a platform and

programming model developed by NVIDIA for graphics processing

units (GPUs). Its Application Programming Interface (API) offers ex-

tensions for many industry standard programming languages, like

the C language, with CUDA’s accelerated libraries and compiler di-

rectives [28] . The CUDA environment allows one to simultaneously

develop code intended for both central processing unit (CPU) and

GPU.

The basic unit of execution in a CUDA program is a thread,

which runs independently and concurrently with a big number of

other similar threads. CUDA uses an execution model known as

Single Instruction, Multiple Thread (SIMT), which allows indepen-

dence between threads. SIMT allows each thread to have differ-

ent execution path, separate registers, and possibly execution di-

vergence that would result in different values in instruction ad-

dress counters [29] . The most common execution divergence oc-

curs with control flow statements (e.g., if-then-else, switch), where

threads that are not meeting a logical condition are stopped until

all other threads fulfilling this condition finish executing this con-

dition [30,31] . To minimize performance penalties, CUDA caches

data from stopped threads for fast access. However, avoiding ex-

ecution divergence and minimizing execution times of all logi-

cal conditions are preferable but not always simple to implement

[32,33] .

Download English Version:

https://daneshyari.com/en/article/4958035

Download Persian Version:

https://daneshyari.com/article/4958035

Daneshyari.com

https://daneshyari.com/en/article/4958035
https://daneshyari.com/article/4958035
https://daneshyari.com

