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a b s t r a c t 

Background and objective: An accurate and practical simulator for Optical Coherence Tomography (OCT) 

could be an important tool to study the underlying physical phenomena in OCT such as multiple light 

scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, 

using Monte Carlo methods. The main drawback of these earlier simulators is the long computational 

time required to produce accurate results. We developed a massively parallel simulator of OCT of inho- 

mogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic 

scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. 

Methods: This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), us- 

ing the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the 

parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a 

tetrahedron-based mesh and uses an advanced importance sampling scheme. 

Results: This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two 

orders of magnitude. To demonstrate this result, we have compared the computation times of our new 

parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have 

shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 

407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 

GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h 

by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. 

Therefore our new parallel simulator is considerably more practical to use than its central processing unit 

(CPU)-based counterpart. 

Conclusions: Our new parallel OCT simulator could be a practical tool to study the different physical 

phenomena underlying OCT, or to design OCT systems with improved performance. 

© 2017 Published by Elsevier Ireland Ltd. 

1. Introduction 

An increasing number of biomedical applications greatly bene- 

fit from optical coherence tomography (OCT) imaging [1–8] . This 

high-resolution, non-invasive technique is ideal for, but not limited 

to, imaging soft tissues. Further studies of the underlying physical 

phenomena and design of novel OCT systems could be carried an- 

alytically or through experiments. However, a practical computer 

simulator of such systems could enable and/or facilitate such ef- 

forts. In this paper, we describe a massively parallel simulator of 

OCT, (which we call OCT-MPS) of inhomogeneous turbid media us- 

ing a graphics processing unit (GPU) that is more than one order 
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of magnitude faster than its central processing unit (CPU)-based 

counterpart [9] . 

Due to its accuracy and applicability to arbitrary media, Wil- 

son and Adam introduced the Monte Carlo (MC) method to solve 

the Radiative Transport Equation (RTE) that has become a widely 

accepted approach to model photon migration in tissue [10] . Later 

Wang et al. [11] , developed a well-known MC simulation of light 

transport in multilayered turbid media (MCML). A broad review of 

methods to simulate light transport in turbid media can be found 

in Zhu and Liu [12] . 

The first MC simulator of OCT imaging was introduced by 

Smithies et al. in 1998, but it was limited to OCT signals from 

single layered media [13] . In 1999, Yao and Wang developed an 

MCML-based simulator of OCT of multilayered media that used 

an importance sampling method to reduce the variance of sim- 

ulated OCT signals from a narrow tissue slice [14] . Lima et al. 
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improved this simulator by introducing an advanced importance 

sampling scheme that decreased the computation time of OCT sig- 

nals from multilayered tissue by two orders of magnitude [15,16] . 

In 2007, Kirillin et al. developed a simulator of OCT of non-planar 

multilayered media [17] . In this approach, the boundaries of layers 

inside the media were modeled as mathematical functions, e.g., si- 

nusoidal functions. This simulator has been used to simulate OCT 

imaging of human enamel in which its boundaries were modeled 

as non-parallel planes [7] . Dolganova et al. used this simulator by 

Kirillin et al. to simulate OCT images of skin with dysplastic nevus 

[18] . Moreover, Shlivko et al. used this simulator to analyze the 

structure and optical parameters of layers of skin with thick and 

thin epidermis [19] . Kirillin et al. also used this simulator to ana- 

lyze the Speckle statistics in OCT signals. Using the Monte Carlo 

simulation and experimental results, they showed that Speckle 

could be modeled with Gamma distribution [20] . Periyasamy and 

Pramanik developed a Monte Carlo simulator for OCT of multilay- 

ered media with embedded objects (such as a sphere, cylinder, el- 

lipsoid, and cuboid) [21] and used importance sampling to reduce 

the computation time of simulations [22] . In his Ph.D. thesis, Sinan 

Zhao has developed a Monte Carlo based TD-OCT and FD-OCT sim- 

ulator [23] . To model media with complex geometry, he subdivided 

media into cuboidal voxels. He used importance sampling and par- 

allelization to reduce the computation time of his simulator. The 

disadvantage of using cubical voxel is its inaccuracy in the esti- 

mation of the specular (i.e., Fresnel) reflection from tilted surfaces 

[23] . 

Recently an MC-based simulator of OCT of inhomogeneous tur- 

bid media with arbitrary spatial distributions was introduced by 

Malektaji et al. [9] . In this OCT simulator, an arbitrary object was 

represented as a tetrahedron mesh that could model an arbitrary 

shape with any desired accuracy. An advantage of using tetrahe- 

drons as the building blocks of an arbitrary object is that it mini- 

mizes the computation cost of OCT simulation compared to other 

possible building blocks [9] . This tetrahedron mesh could be ob- 

tained using mesh generator applications such as NETGEN [24] . 

Even though Malektaji et al. used an advanced importance sam- 

pling scheme to reduce computations, simulation of a B-scan of a 

sphere inside a slab, using 10 7 photon packets, required approx- 

imately 360 h on a typical central processing unit (CPU) -based 

desktop computer [9] . 

In this paper, we describe a massively parallel implementation 

of the CPU-based simulator described in [9] ; this parallel imple- 

mentation resulted in a reduction of simulation time by more than 

one order of magnitude. Therefore, it would be considerably more 

practical to use our new parallel implementation, i.e., OCT-MPS, 

compared to its CPU-based counterpart. Our massively parallel im- 

plementation runs on graphics processing units (GPUs), using the 

Compute Unified Device Architecture (CUDA) platform and pro- 

gramming model by NVIDIA [25] . In the following sections, we give 

an overview of the core concepts of parallel programming with 

CUDA before explaining in detail the parallel implementation of 

our simulator. Also, we describe the simulation of OCT imaging of 

inhomogeneous objects, our GPU memory utilization and our gen- 

eration of parallel random numbers. We also provide portability 

guidelines for running our simulator on different CUDA GPUs. Fi- 

nally, we present simulation results of OCT of nonplanar inhomo- 

geneous media with arbitrary shapes and discuss the reduction in 

computation time. 

2. Simulation of OCT signals from of an inhomogeneous object 

Following the procedure to simulate OCT signals from an ob- 

ject consisting of arbitrary shaped regions, in [9] , each region 

is defined with its optical parameters; scattering coefficient μs , 

absorption coefficient μa , refractive index n , and an anisotropy 

factor g . Simulation of light propagation is modeled with a num- 

ber of photon packets undergoing a random walk inside this object. 

During such random walks, the photon packets experience absorp- 

tion and scattering events, where one photon packet splits into two 

packets traveling in different directions. To simulate OCT signals, a 

large number of photon packets are launched with the same ini- 

tial position representing a thin beam incident perpendicular to 

the surface of the medium. The photon packets are traced inside 

the medium according to the rules described in references [ 11 , 14 ]. 

The flowcharts of the process of tracing photon packets inside the 

medium are shown in Fig. 1 . 

A collecting fiber, with a specific acceptance angle, θmax , and 

radius, d max , is located at the top of the medium to detect 

backscattered photons. The photons are collected by the fiber 

probe if their angle and position are within the acceptance angle 

of the probe. Three types of photons are collected from a depth 

z by the fiber: (1) ballistic photons that are single scattered, (2) 

quasi-ballistic photons that are multiply scattered within the co- 

herence length of the optical source, and (3) multiply scattered 

photons beyond the coherence length of the optical source. Ballis- 

tic and quasi-ballistic photons contribute to Class I diffusive reflec- 

tivity. The multiply scattered photons beyond the coherence length 

contribute to Class II diffusive reflectivity. It has been shown that 

Class II diffusive reflectivity is the main limiting factor in imaging 

depth of OCT [26,27] . 

3. Implementation of our OCT massively parallel simulator 

The implementation of our OCT massively parallel simulator 

(OCT-MPS) addresses the high computational load of processing 

a typically large number of samples required for a suitable ac- 

curacy. In our simulator, a large number of samples, i.e., photon 

packets, are launched simultaneously and traced independently. 

Thus, we should expect a considerable reduction in computation 

time due to parallel implementation. In this Section, we describe 

the CUDA programming environment, the design and implementa- 

tion of OCT-MPS, including photon packet tracing, random number 

generation, and memory utilization. We also discuss its portability 

across different GPUs. 

3.1. CUDA programming environment 

Compute Unified Device Architecture (CUDA) is a platform and 

programming model developed by NVIDIA for graphics processing 

units (GPUs). Its Application Programming Interface (API) offers ex- 

tensions for many industry standard programming languages, like 

the C language, with CUDA’s accelerated libraries and compiler di- 

rectives [28] . The CUDA environment allows one to simultaneously 

develop code intended for both central processing unit (CPU) and 

GPU. 

The basic unit of execution in a CUDA program is a thread, 

which runs independently and concurrently with a big number of 

other similar threads. CUDA uses an execution model known as 

Single Instruction, Multiple Thread (SIMT), which allows indepen- 

dence between threads. SIMT allows each thread to have differ- 

ent execution path, separate registers, and possibly execution di- 

vergence that would result in different values in instruction ad- 

dress counters [29] . The most common execution divergence oc- 

curs with control flow statements (e.g., if-then-else, switch ), where 

threads that are not meeting a logical condition are stopped until 

all other threads fulfilling this condition finish executing this con- 

dition [30,31] . To minimize performance penalties, CUDA caches 

data from stopped threads for fast access. However, avoiding ex- 

ecution divergence and minimizing execution times of all logi- 

cal conditions are preferable but not always simple to implement 

[32,33] . 
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