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a b s t r a c t 

Background and objective: Feature reduction is an essential stage in computer aided breast cancer diag- 

nosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high- 

dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if 

the initial weights are close to a proper solution. They are also trained to only reduce the mean squared 

reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address 

the classification error. The goal of the current work is to test the hypothesis that extending traditional 

auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding 

Pareto-optimal solutions provides more discriminative features that will improve classification perfor- 

mance when compared to single-objective and other multi-objective approaches (i.e. scalarized and se- 

quential). 

Methods: In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, 

in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto- 

optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non- 

dominated sorting genetic algorithm. 

Results: We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show 

that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, 

demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. 

Conclusions: We conclude that adding the classification objective to the traditional auto-encoder objec- 

tive and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, 

results in producing more discriminative features. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Although mammography is an effective modality for early 

breast cancer detection and diagnosis, on mammographic examina- 

tions, 10–30% of cancerous/noncancerous lesions may be misinter- 

preted [1] . To overcome this, computer aided diagnosis (CADx) sys- 

tems have been developed. The accuracy of CADx for x-ray breast 

mammography still requires improvements to be useable as a flaw- 

less guide (an alert system flagging potential misclassification to 

the human operator) for radiologists or an independent clinical 

interpreter [2,3] . Recently, CADx systems have been developed to 

help radiologists classify suspicious lesions, e.g., labeling the lesion 

according to the Breast Imaging Reporting And Data System (BI- 

RADS) assessment categories [4] . In order to build a classification 

system, a large number of features can be calculated from mam- 
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mograms, but using high-dimensional features with relatively few 

training samples can lead to the classifier over-fitting to the train- 

ing data. This can degrade the predictive model performance as 

well as having a high computational cost. Since features in mam- 

mograms can be noisy and/or highly correlated with each other, 

feature transformation and reduction is often used to extract rele- 

vant features with high discriminatory power from a large number 

of potential candidate features [5,6] . 

Related mammography classification works . Mohanty et al. 

[7] designed an association rule mining based mammogram clas- 

sification procedure to classify the extracted and hypothetically 

selected gray level co-occurrence matrix (GLCM) features. This 

method requires an accurate set of association rules between the 

features and labels to be defined. The high number of features 

required for breast cancer diagnosis makes defining these rules a 

difficult task, which may results in a large number of irrelevant as- 

sociations. In one of the most recent works, Bria et al. [8] proposed 

a classification system based on a cascade boosting classifier. The 

authors defined 145 features to describe the micro-calcifications 
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but only discriminated between 2 classes, which are insufficient 

to address the variety of BI-RADS classes. Oliver et al. [9] designed 

a CAD system using PCA and Bayesian combination of kNN and 

C4.5 classifiers. This was tested on 184 selected views (all with 

at least one mass) from a private digital mammographic dataset. 

They proved that considering density information influences the 

performance of CAD systems for the detection of breast masses. 

Without considering breast density information they obtained a 

92% accuracy, while by taking density information into account, 

they achieved an accuracy of 94%. Subshini et al. [10] selected 43 

mammograms from the MIAS database and preprocessed them to 

remove the pectoral muscle and radiopaque artifacts. Next, they 

extracted statistical features e.g., entropy, uniformity, standard de- 

viation and others from the filtered images for breast characteriza- 

tion. Then, using a SVM classifier they classified the data into three 

classes of breast density achieving an accuracy of 95.44%. Verma 

et al. [11] selected 200 ROIs from the DDSM dataset and extracted 

several features like mass margin, density, patient age, mass shape, 

subtlety value, and abnormality assessment rank. They proposed 

to classify the ROIs into two classes of benign and malignant with 

a soft-clustered direct learning algorithm. An accuracy of 97% was 

obtained by their proposed method. CAD was applied to standard 

mammograms from 127 cases in Sadaf et al. [12] . The authors ana- 

lyzed the CAD sensitivity under 10 classes based on mode of 

presentation, breast density, lesion size, lesion type, and 

histopathology. Their overall CAD sensitivity was 91% (115 of 

127 cases). Deserno et al. [13] used 2796 patches and defined 12 

classes based on BI-RADS assessment categories, BI-RADS tissue 

density classes, and type of lesion. For feature extraction they 

applied PCA, 2DPCA, and SVM. Finally, they tested a SVM with 

three different kernels as a classifier. The best result observed was 

80% using 2DPCA feature extraction and a SVM with a Gaussian 

kernel. 

1.1. From shallow to deep learning dimensionality reduction 

A significant amount of research has focused on shallow learn- 

ing approaches such as support vector machines (SVM) [14] , prin- 

cipal component analysis (PCA) [15] , and linear discriminant anal- 

ysis (LDA) [16] . Although SVMs are relatively easy to optimize 

and have good performance for feature transformation/reduction 

on continuous balanced data, even with advanced kernels, they 

do not perform well on imbalanced data which results in produc- 

ing sub-optimal solutions [17] . Similar to PCA, the linearity and 

the underlying Gaussian assumption of LDA renders the LDA pro- 

jections incapable of discriminating complex nonlinear data with 

non-Gaussian distributions. In 2006, the situation was changed 

by Hinton et al.’s revolutionary research on deep belief networks 

[18] along with work by Bengio et al. [19] and Poultney et al. 

[20] . This sparked a significant research effort into deep learn- 

ing focused on solving the problems of training multiple layers in 

deep networks and improving initialization. To address this, several 

optimizations were proposed e.g., unsupervised greedy layer-wise 

pre-training of each layer [21] , stochastic gradient descent meth- 

ods, limited memory BFGS (L-BFGS) and conjugate gradient [22] . 

In recent years, deep learning strategies have been significantly im- 

proved. For a more detailed review on deep learning the reader is 

referred to [23–25] . 

1.1.1. Auto-encoders 

Auto-encoders (AEs) encode high-dimensional input data into 

low-dimensional output codes and then recover the original data 

from the codes. Bengio et al., motivated the use of restricted Boltz- 

mann machines (RBMs) as pre-training for AEs to build a deep 

structure [23] . To improve reconstruction fidelity, regularization of 

AEs was proposed. This can be divided into three models: sparse 

auto-encoders (SAEs), denoising auto-encoders (DAEs), and con- 

tractive auto-encoders (CAEs). SAEs were introduced by Ranzato 

et al. [26] and inspired by Bengio et al.s stacked AEs [27] . Sparsity 

of the representation could be obtained either by penalizing the 

hidden unit biases or by direct penalization of the hidden unit out- 

puts. However, this penalty bias can potentially cause the weights 

to compensate for the bias, which weakens numerical optimiza- 

tion [24] . Vincent et al. [28] proposed DAE to modify the learning 

procedure from only reconstructing the raw data to reconstruct- 

ing the corrupted (noisy) version of the data. These auto-encoders 

are optimized to, first, encode the noisy input data and second, 

recover the original input. A stacked denoising AE (SdAE) is con- 

structed by stacking layers of DAEs. They utilize an additional layer 

to minimize the classification error, however, this is done sequen- 

tially not simultaneously [29] . CAEs [30] are an extension of DAEs, 

as they add a contractive penalty to the reconstruction error func- 

tion, which penalizes attributes sensitivity to input variations. The 

fundamental weakness of the CAEs penalty is that it only considers 

the minuscule variations of input [24] . This was partially improved 

in [31] , but not fully addressed. 

Related multi-objective (semi-supervised) autoencoders. In 

the following paragraphs we focus on detailing the most relevant 

works. AEs have traditionally been used to perform unsupervised 

(i.e. without considering the classification task at hand) dimen- 

sionality transformation and reduction [24] . This process requires 

a large amount of unlabeled data samples to produce good fea- 

ture encodings for reconstruction. However, this process may fail 

to capture the relevant class information in the data [26] . To re- 

duce the requirement for input data and to find a more mean- 

ingful link between the unlabeled data and a classification prob- 

lem, semi-supervised variants of AE were proposed [29,32,33] , i.e. 

techniques that minimize both reconstruction error and classifica- 

tion error (either in sequential steps or by combining the multi- 

objective function into a scalarizing function). 

Socher et al. [32] introduced a semi-supervised greedy recursive 

AE, in which a scalar cost function, summing up both reconstruc- 

tion error and cross-entropy-based classification error, was used. 

They applied the L-BFGS algorithm for optimization. However, 

the L-BFGS is highly dependent on the pre-conditioner to avoid 

degenerating to the steepest descent method [34] . Furthermore, 

their method required careful tuning of a user-defined parame- 

ter that weighs the contributions of the reconstruction and the 

cross-entropy error terms. Similarly, other researchers [26,35–37] 

translated the multi-objective problem into a single-objective 

scalar function. More specifically, their scalarization (weighted- 

sum) method minimizes a positively weighted convex sum of the 

objectives (reconstruction error and discriminative error). However, 

as mentioned by Goldberg and Holland, [38] : “there are times 

when several criteria are present simultaneously and it is not pos- 

sible (or wise) to combine these into a single number”. More- 

over, it is difficult to define a set of appropriate weights to con- 

trol the scalarized function to produce Pareto-optimal solutions (a 

solution is considered as a pareto optimal if it is not dominated 

by other solutions) [39] . Although several weight optimizations 

have been previously introduced e.g. [40] , it is a complicated task 

to find relevance between the weights. Moreover, conducting sev- 

eral weight optimizations is computationally expensive. Addition- 

ally, the scalarization method suffers from two technical draw- 

backs. First, the relation between the Pareto curve and the objective 

function weights is a monotone spread of weight parameters, how- 

ever, it does not generally produce uniformly distributed points 

on the Pareto curve . Second, minimizing the convex combinations 

of the objective functions does not necessarily result in reaching 

the non-convex portions of the Pareto set [41] . More recently, Al- 

mousli et al. [33] changed the cost function of the DAE in order to 

produce more accurate results for a supervised task. They included 
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