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a b s t r a c t 

Background and objectives: In this paper we propose a novel single-channel harmonic and baseline noise 

removal approach based on the low-rank matrix factorization theory. It aims to enhance spectrogram 

sparsity in order to significantly reduce the dimensionality of the underlying sources in the input data. 

Such a low-rank non-negative representation approach admits efficient noise removal. 

Methods: The sparsity is improved by a modification of the time-frequency basis through the following 

signal processing steps: (1) spectrograms segmentation, (2) non-negative rank estimation, and (3) source 

grouping. The source waveforms are retrieved by means of non-negative matrix factorization and the 

overlap-add method. The proposed method was tested on real electrocardiogram and electromyogram 

signals for different analysis scenarios, against two state-of-the-art reference methods. 

Results: Performance evaluation was carried out by means of the output signal-to-interference ratio. In 

the electrocardiogram analysis scenarios, for the input signal-to-interference ratio as low as −15 dB, the 

proposed method outperforms the reference methods by 8 dB and 17 dB respectively. Regarding elec- 

tromyogram denoising, the performance improvement is about 3 dB. 

Conclusions: The proposed method was shown to be very efficient in harmonic and baseline simultaneous 

removing from electrocardiogram and electromyogram signals. Its structure allows for a straightforward 

extension to other biopotential signals e.g. electroencephalograms and multichannel processing. 

© 2017 Elsevier Ireland Ltd. All rights reserved. 

1. Introduction 

Noise removal is very often a crucial step in processing and 

interpreting biopotential data. The noise artifacts most commonly 

encountered in such signals are harmonic (a.k.a. powerline) and 

baseline noise. Harmonic noise is characterized by a few time- 

variant harmonic components centered at integer multiples of 

the fundamental frequency (50 Hz/60 Hz). It typically arises as a 

combination of several unwanted effects: capacitive coupling be- 

tween the subject and power lines, differences in the electrode 

impedances, separation between the electrodes, measurement in- 

terconnections, to name a few [1–4] . Baseline noise is defined as 

a long-term drift (slowly-varying DC component) whose frequency 

range usually falls below 1 Hz [5] . It is mainly caused by subject’s 

movements during the measurements, spatial-variant electrode- 

skin impedance and breathing [6–8] . Both noise sources spectrally 
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overlap with frequency bands that contain clinically relevant infor- 

mation. Moreover, the useful signal instantaneous amplitude is of- 

ten very close to the noise level, giving rise to low signal-to-noise 

ratio (SNR) measurements. Accordingly, to ensure minimal signal 

distortion while suppressing the artifacts is a very difficult task. 

Related work encompasses a number of approaches where the 

problem of harmonic and baseline noise removal was usually 

treated separately. Amongst the approaches that aim at suppress- 

ing the harmonic noise the most salient are notch filtering [9] , 

adaptive filtering [10–15] , outlier detection [16] , component sub- 

traction [17,18] , intrinsic mode decomposition [19] , wavelet anal- 

ysis [20] . Regarding baseline removal problem, the research focus 

was set on high-pass filtering [21] , adaptive filtering [22] , curve fit- 

ting [23,24] , empirical mode decomposition [25] , to name the most 

cited. To the best of our knowledge, only a few approaches deal 

jointly with both noise sources: FIR filtering [26] , fractal and em- 

pirical mode decomposition [27] and sinusoidal modeling [28] . 

Herein we focus our attention on matrix sparsity and non- 

negative rank, which are one of the most prominent concepts of 

the low-rank matrix decomposition theory [29,30] . Briefly, it states 

that a large matrix with a small number of significant non-negative 
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entries can be replaced by a lower rank matrix, providing a more 

efficient representation of the relationship between data elements. 

Such a matrix brings out the most relevant components of the data 

while, at the same time, mitigating the effect of possible distur- 

bances. Harmonic and baseline noise are time-variant narrow-band 

signals which are almost sparse in the time-frequency (TF) domain 

i.e. their individual spectrograms can be compactly described by 

non-negative vectors/matrices of a very small rank. However, in 

presence of a biopotential signal, this convenient description often 

does not hold for two reasons. On the one hand, some biopotential 

signals are wide-band signals (e.g. EMG) which spectrally encom- 

pass the harmonic and baseline noise. As a biopotential signal is 

usually the dominating source in the data, the sparsity condition of 

the harmonic and baseline noise might be seriously degraded. On 

the other hand, we cannot uniquely determine the non-negative 

rank of individual sources in the data if no additional information 

on the mixing system is available. A usual shortcut to this prob- 

lem is to assign a user-defined rank to each source and then tune 

them up by some iterative trial-and-error input matrix decomposi- 

tion procedure. Such an approach is computationally costly and is 

not guaranteed to converge to optimal individual ranks. 

Recently there have been a few attempts which aimed at sep- 

arating ECG–EMG signal mixtures by making use of sparsity and 

unsupervised learning algorithms based on NMF [31,32] . The for- 

mer focused on enhancing the sparsity of the ECG spectrogram 

by filtering and downsampling the input signal, thus bringing out 

the QRS complexes against the EMG background. The latter pro- 

cessed input data by the wavelet transform with adequately chosen 

basis functions (Cauchy-type non-linearly scaled wavelets) which 

captured the basic ECG waveforms shapes with a relatively small 

number of wavelet coefficients. Both methods provided a sparse 

ECG TF representation which was used as the initialization for the 

NMF algorithms and they both achieved a very good ECG–EMG 

separation compared to the existing state-of-the-art techniques. 

However, both methods have important drawbacks, namely: (1) 

they do not work with data containing more than two signal 

sources, (2) their performance largely depends on the analysis win- 

dow size used to generate TF representations, and (3) they always 

consider unitary rank matrix description independent of the signal 

source dynamics. 

The present application deals with separating more than two 

sources from the input mixture; therefore, the above methods 

could not be used in the current form. Adopting the general ap- 

proach based on sparsity and unsupervised learning, we propose 

a novel method which poses the harmonic and baseline noise re- 

moval task as a source separation problem (the preliminary re- 

search in the context of EMG denoising was discussed in [33] ). 

The proposed method overcomes the aforementioned drawbacks 

by introducing new algorithm features, namely: unambiguous non- 

negative rank estimation of individual sources in the data and 

phase-preserving spectrogram segmentation. Optimal non-negative 

rank is a key factor in any non-negative matrix decomposition be- 

cause: (1) it provides a way to drastically reduce problem dimen- 

sionality without losing any relevant characteristic of the under- 

lying source; (2) it allows for fast convergence of the NMF al- 

gorithms. However, existing algorithms for computing the non- 

negative rank introduce a prohibitively high computational cost, 

which impedes its use in on-line applications. Herein we develop 

a study which (1) discusses a general relationship between stan- 

dard and non-negative matrix rank, and (2) shows under which 

circumstances those ranks can be used interchangeably in the con- 

text of the present application. A major benefit of this study is 

that the estimation of the non-negative rank can be carried out by 

an economy-size singular value decomposition (SVD), which dras- 

tically relaxes the algorithm’s overall computational cost. Further- 

more, we introduce a spectrogram segmentation procedure which 

aim at coarse separation of underlying signal sources in the TF do- 

main by means of a set of data-driven spectrogram shaping vec- 

tors. Such a segmentation scheme ensures that no spectral phase 

modification occurs; accordingly, the estimated signal component 

waveforms are virtually distortionless. 

By combining these novel features with NMF, our algorithm 

achieves an unambiguous and physically meaningful signal-noise 

separation from the spectrogram of the input data in only a few 

computational iterations. Moreover, such a separation strategy was 

proven experimentally to be especially efficient in data acquisitions 

with very low SNR. 

2. Methods 

As we deal with matrices with non-negative entries, it is as- 

sumed that the signal to be processed x ∈ R 

m is in the form of 

the Short-Time Fourier Transform: ST F T { x } = X ◦ �, X ∈ R 

m ×n 
+ and 

� ∈ C 

m ×n , where m equals the number of frequency bins in [0, 

π ) rad/sample, n is given by the number of overlapped short-time 

segments, whilst the operator ‘ ◦’ stands for the Schur–Hadamard 

entry-wise multiplication. Thus, X contains the amplitudes whilst 

� encodes the phases in the form of unitary-magnitude complex 

exponentials. Accordingly, the squared modulus of the STFT pro- 

vides a spectrogram matrix S = X 

◦X . 

2.1. Spectrogram segmentation 

Let us assume that the number of concurrent sources in the 

input record is N , which typically encompasses the desired biopo- 

tential source plus interferences and perturbations of either a de- 

terministic or a random nature. Starting from S we seek to obtain 

N sub-spectrograms S i ∈ R 

m ×n 
+ , i = 1,…, N such that S i contains most 

of the energy of the i th source plus energy-attenuated contribu- 

tions from the remaining sources. If we express S = ( s 1 , …, s n ) with 

s k ∈ R 

m + , k = 1,…, n being column vectors, the sub-spectrograms are 

obtained: 

S i = ( s 1 
◦h i , . . . , s n 

◦h i ) , i = 1 , . . . , N, (1) 

where h i ∈ R 

m are spectrogram shaping vectors. The shapes of h i 
are determined under the assumption that the number and na- 

ture of the underlying sources is known. It is very important 

to highlight that spectrogram shaping is not equivalent to filter- 

ing. With spectrogram shaping the phase information is fully pre- 

served, which is crucial for the final time-domain conversion step 

( Section 2.4 ). As an illustration, Fig. 1 shows the vectors h i for an 

input EMG recording corrupted by baseline and harmonic noise. 

Algebraically, the sub-spectrograms (being rough TF estimates 

of the underlying sources) are matrices where a certain number 

of rows (spectra) contain entries close to zero. This is especially 

true for the noise sub-spectrograms due to the highly selective 

performance of the shaping vectors. Accordingly, these matrices 

are almost sparse because rather than being exactly zeros, the en- 

tries are relatively small numbers. Such approximately sparse ma- 

trices admit important dimensionality reductions where optimal 

non-negative rank estimation plays a key role. 

2.2. Non-negative rank estimation 

At this point we must first differentiate between standard rank 

and nonnegative rank. The standard rank of a matrix, as revealed 

by the SVD for instance, is the size of the largest set of its 

columns (or rows) that are linearly independent. However, for a 

non-negative matrix we need to consider the non-negative rank 

which is defined as follows [34] . 
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