ELSEVIED

Contents lists available at ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Hollow hybrid titanate/Au@TiO₂ hierarchical architecture for highly efficient photocatalytic application

Lixia Liu^a, Jing Yang^a, Shaodong Liu^a, Li Bai^b, Baocang Liu^a, Qin Wang^a, Guangran Xu^a, Peng Jing^a, Shengli Yu^a, Jun Zhang^{a,c,*}

- ^a College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
- ^b Energy Conservation & Supervision of Ordos, Ordos 017000, PR China
- ^c Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, PR China

ARTICLE INFO

Article history: Received 25 March 2014 Received in revised form 16 May 2014 Accepted 20 May 2014 Available online 2 June 2014

Keywords: Titanate Anatase titanium dioxide Hybrid hierarchical architecture Photocatalyst

ABSTRACT

Hollow hybrid titanate/ $Au@TiO_2$ hierarchical architecture consisting of titanate and anatase titanium dioxide (TiO_2) loaded with Au nanoparticles was prepared via a sol-impregnation method combined with a hydrothermal etching process. The titanate/ $Au@TiO_2$ architecture possesses unique hollow spherical configuration with Au nanoparticles loaded in the middle of titanate and TiO_2 shells and allows to be used as a microreactor for photocatalytic application. The hybrid titanate/ $Au@TiO_2$ photocatalyst shows significantly enhanced photocatalytic activity on degradation of methylorange (MO) under UV light irradiation due to the lower electron–hole pairs recombination rate arisen from the synergistic effect of titanate-Au-TiO₂ in hybrid hierarchical architecture.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Heterogeneous photocatalysis is a potential approach to solve worldwide environmental and energy-related issues with great promise [1]. Recently, titanium dioxide (TiO₂) materials have attracted great attention due to their high surface-to-volume ratio, lower density, better permeation, and wide potential applications in solar energy conversion and environmental purification [2–6]. It is generally accepted that the catalytic performance of TiO₂ materials is largely correlated with their size, morphology, and surface state. It is revealed that the catalytic performance of TiO₂ materials can be improved by loading noble metals (Ag, Au, Pt, or Pd) on TiO₂ to form noble metal supported TiO₂ catalysts [7–11]. Besides, the catalytic performance can also be enhanced by incorporating other semiconductor oxides (CdS, SnS_x, Ag₂O, WO_x, Bi₂O₃, ZnMn₂O₄, FeTiO₃, or LaVO₄) into TiO₂ to form hybrid composite catalysts [12–16]. In addition, it is also proven that the modification of TiO₂ surface to obtain specifically functionalized TiO₂ can further enhance the catalytic performance [17]. Furthermore, the creation of high-energy exposed facets of TiO₂ to enhance the catalytic performance of TiO₂ materials was greatly focused [18-20]. Lately, it was further suggested that that

E-mail address: cejzhang@imu.edu.cn (J. Zhang).

 ${
m TiO_2}$ materials with hierarchical structures may show improved catalytic performance. As it was demonstrated by previous reports [21,22], the hollow architectures possessed low density, high surface area, and good stability and permeability and can be used as microreactors with the confinement effects for gathering the reactants and making them closely contact with the catalyst during the catalytic reaction process, which may eventually improve the catalytic activity. To this aspect, hierarchical ${
m TiO_2}$ architectures constructed by unique individual building block are highly desired because of their more efficient light harvesting due to excellent incident light scattering within the structures, unique hierarchical characteristics, and high organic dye or pollutant adsorption [12,23–27].

In this paper, we developed a facile sol-impregnation method combined with a hydrothermal etching process to create hollow hybrid titanate/Au@TiO2 hierarchical architecture composed of internal titanate and external anatase TiO2 shells anchored with noble metal Au nanoparticles in the middle. The aim of such design is to hybridize the energy levels of titanate-Au-TiO2 to improve the photocatalytic activity while endowing the hierarchical architecture hollow microreactor configuration to enhance photocatalytic performance. It is proven that the obtained hybrid titanate/Au@TiO2 architecture shows significantly enhanced photocatalytic activity on degradation of methylorange (MO) under UV light irradiation in comparison with the commercial bench material of P25. The obtained hybrid titanate/Au@TiO2 hierarchical architecture may find potential application in photocatalytic degradation of organic dyes.

^{*} Corresponding author at: College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China. Tel.: +86 471 4992175; fax: +86 471 4992278.

2. Experimental

2.1. Synthesis of SiO₂@TiO₂ spheres

Monodispersed SiO₂ spheres used as templates were synthesized by a Stöber sol–gel method according to the previous report [22]. The SiO₂ spheres (1 g) were dispersed into absolute ethanol (30 mL). After that, aminopropyl triethoxysilane (ATPES, 1 mL) was added and the solution was stirred at room temperature for 12 h to ensure the amino groups modified on the surface of SiO₂ spheres. The amino-modified SiO₂ spheres were collected by centrifugation and dried at 65 °C. Then to achieve the SiO₂@TiO₂ spheres, the amino-modified SiO₂ spheres (50 mg) were then dispersed in a mixed solvent containing 90 mL of ethanol and 30 mL of acetonitrile under ultrasonication. The suspension was mixed with 0.5 mL of ammonia solution at room temperature, and tetrabutyl titanate (TBOT, 1 mL) was added under stirring. After reacting for 3 h, the SiO₂@TiO₂ spheres were collected by centrifugation and washed with ethanol several times.

2.2. Synthesis of hollow titanate spheres

The SiO_2 @TiO $_2$ sphere (0.5 g) were mixed with an aqueous NaOH solution (20 mL, 1.0 M) and stirred for 10 min, then placed in a 30 mL Teflon-lined stainless-steel autoclave. The autoclave was heated at 150 °C for 24 h and then allowed to cool to room temperature. The obtained products were then immersed in HCl aqueous solution (100 mL, 0.1 M) for 20 min and subsequently washed with deionized water until the solution reached the neutral pH, and then dried at 60 °C to achieve hollow titanate spheres.

2.3. Synthesis of SiO₂/Au and hollow titanate/Au spheres

HAuCl₄ solution (1 g/L, 12.6 mL) and polyvinyl alcohol solution (PVA, 1 wt%, 0.75 mL) were diluted to 100 mL with deionized water under vigorous stirring. After 30 min, NaBH₄ solution (0.1 mol/L, 1.5 mL) was injected into the above solution, and a dark orange-brown solution was obtained. After another 30 min, SiO₂-NH₂ or hollow titanate (0.2 g) was added immediately. After stirring for 12 h, the Au colloids were completely absorbed. The SiO₂/Au or hollow titanate/Au was collected by centrifugation and washed for several times with deionized water to completely remove the chloride ion.

2.4. Synthesis of hollow titanate/Au@TiO2 and @Au/TiO2 spheres

Hydroxypropyl cellulose (HPC, 400 mg) was dissolved in deionized water (30 mL) under ultrasonication. Then titanate/Au or SiO₂/Au (0.2 g) was added into the solution. After stirring for 12 h, the products were collected by centrifugation and washed with ethanol several times to obtain the HPC-modified hollow titanate/Au or SiO₂/Au. The obtained HPC-modified h-titanate/Au or SiO₂/Au was re-dispersed in mixed solvent of ethanol (95 mL) and H₂O (0.4 mL). The reaction mixture was stirred for 30 min and tetrabutyl titanate (TBOT, 2 mL) dissolved in ethanol (20 mL) was slowly added to using a syringe pump (0.5 mL min^{-1}). The solution was stirred for 100 min under reflux conditions. The hollow titanate/Au@TiO2 or SiO2/Au@TiO2 was collected by centrifugation and washed with ethanol. The SiO₂ templates were further removed with NaOH to obtain @Au/TiO2. In order to improve the photocatalyst crystallinity, the obtained @Au/TiO2, SiO₂/Au@TiO₂, and hollow titanate/Au@TiO₂ were calcined at 500 °C for 2 h. The characterization and the photocatalytic test sections are supplemented in the supporting information.

3. Results and discussion

3.1. Synthetic process

The synthetic procedures for hybrid titanate/Au@TiO $_2$ hierarchical architecture involve several steps (Scheme 1). Uniform SiO $_2$ spheres were used as templates, and then a compact TiO $_2$ layer was deposited directly on the surface of SiO $_2$ spheres. The resulting SiO $_2$ @TiO $_2$ spheres were hydrothermally etched in NaOH solution at 150 °C to remove the SiO $_2$ cores and achieve hollow titanate spheres. After that, Au nanoparticles were loaded on the surface of hollow titanate spheres to obtain hollow titanate/Au spheres. The hollow titanate/Au spheres were further coated with a TiO $_2$ layer to obtain the hybrid @titanate/Au@TiO $_2$ hierarchical architecture. For comparison, hollow @Au/TiO $_2$ microsphere without titanate shells was also prepared.

3.2. Phase structure

Fig. 1A comparatively shows the XRD diffraction patterns SiO₂/Au, SiO₂/Au@TiO₂ (calcined at 500 °C), @Au/TiO₂ (calcined at 500 °C), SiO₂@TiO₂, hollow titanate, hollow titanate/Au, and hollow titanate/ Au@TiO₂ (calcined at 500 °C). It is revealed that the diffraction patterns for the obtained architectures can be well indexed, and their crystalline phase structure can be perfectly identified. As indicated Fig. 1A(a), the SiO₂/Au shows a board diffraction peak located at around 23° indexed to amorphous SiO₂, and a characteristic diffraction peak around 38.2° corresponding to Au nanoparticles (JCPDS no. 04-0784) is also observed, suggesting that Au nanoparticles are loaded on the SiO₂ surfaces. After coating a layer of TiO₂ and being calcined at 500 °C following the removal of SiO₂ with NaOH, the SiO₂/Au@TiO₂ and @Au/TiO₂ are obtained and their XRD patterns are shown in Fig. 1A(b and c). The diffraction peaks appeared at 25.4°, 37.8°, 48.1°, 54.0°, and 55.2° are assigned to the lattice planes of (101), (004), (200), (105), and (211) of anatase TiO₂ (JSPDS no. 89-4921), respectively, suggesting the formation of wellcrystallized TiO₂ layer. To obtain the final hollow titanate/Au@TiO₂, the SiO₂@TiO₂ is first synthesized, as its XRD pattern is illustrated in Fig. 1A(d). The TiO₂ layer is coated via a sol-gel method without calcination; thus, the TiO₂ layer is amorphous and no diffraction peaks assigned to crystallize TiO₂ are observed. After hydrothermally etching the SiO₂@ TiO₂, the hollow titanate is obtained, as its XRD pattern is shown in Fig. 1A(e). It is found that the XRD diffraction peaks located at 25.7°, 48.8°, and 63.2° are assigned to titanate [28], indicating that the hydrothermal etching treatment with NaOH can make the amorphous TiO₂ layer transform into titanate while removing the SiO₂ to form hollow titanate. After the loading of Au nanoparticle, the hollow titanate/Au shows the similar diffraction pattern as hollow titanate, as shown Fig. 1A(f), and no diffraction peaks attributed to Au is observed probably due to the low loading content and the well dispersion of small Au nanoparticles. After coating the final layer of TiO2 and calcining at 500 °C, the titanate/Au@TiO₂ architecture is obtained, as its XRD pattern is shown in Fig. 1A(g). The diffraction peaks located at 25.4°, 37.8°, 48.1°, 55.2°, and 60.0° can be assigned to the lattice planes of (101), (004), (200), (105), and (211) of anatase TiO₂ (JSPDS no. 89-4921), respectively. The board diffraction peak located at 23° is indexed to amorphous SiO₂. The characteristic diffraction peaks corresponding to Au nanoparticles appeared at 38° (JCPDS no. 04-0784) illustrate that Au nanoparticles have been successfully loaded on the surface of SiO₂ spheres.

3.3. Surface area and porous structure

Fig. 1(B and C) shows the N_2 adsorption/desorption isotherms and the corresponding pore size distribution of hollow titanate, hollow titanate/Au, hollow titanate/Au@TiO₂ spheres, and P25. It is found that hollow titanate, hollow titanate/Au, and hollow titanate/Au@TiO₂ exhibit a type IV isotherm, indicating the mesoporous characteristics of the hollow spheres [29], in consistence with the TEM results shown

Download English Version:

https://daneshyari.com/en/article/49582

Download Persian Version:

https://daneshyari.com/article/49582

<u>Daneshyari.com</u>