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a b s t r a c t 

Background and Objective: Using deep-learning methodologies to analyze multimodal physiological sig- 

nals becomes increasingly attractive for recognizing human emotions. However, the conventional deep 

emotion classifiers may suffer from the drawback of the lack of the expertise for determining model 

structure and the oversimplification of combining multimodal feature abstractions. 

Methods: In this study, a multiple-fusion-layer based ensemble classifier of stacked autoencoder (MESAE) 

is proposed for recognizing emotions, in which the deep structure is identified based on a physiological- 

data-driven approach. Each SAE consists of three hidden layers to filter the unwanted noise in the phys- 

iological features and derives the stable feature representations. An additional deep model is used to 

achieve the SAE ensembles. The physiological features are split into several subsets according to different 

feature extraction approaches with each subset separately encoded by a SAE. The derived SAE abstrac- 

tions are combined according to the physiological modality to create six sets of encodings, which are 

then fed to a three-layer, adjacent-graph-based network for feature fusion. The fused features are used to 

recognize binary arousal or valence states. 

Results: DEAP multimodal database was employed to validate the performance of the MESAE. By com- 

paring with the best existing emotion classifier, the mean of classification rate and F-score improves by 

5.26%. 

Conclusions: The superiority of the MESAE against the state-of-the-art shallow and deep emotion classi- 

fiers has been demonstrated under different sizes of the available physiological instances. 

© 2016 Elsevier Ireland Ltd. All rights reserved. 

1. Introduction 

1.1. Overview 

Since collaborations between human and machines (or comput- 

ers) exist in various working or living environments, researchers in 

the area of ergonomics and intelligent systems attempt to improve 

efficiency and flexibility of human-computer interaction (HCI) with 

high satisfaction levels of human agent [1] . Such intelligent HCI 

systems require the capability of self-adaptation of computers [2] , 

in which the accurate comprehension of human communications 

is necessary for machine agent to trigger proper feedback [3] . The 

human intentions can be expressed in a verbal or a non-verbal 

manner that carries different emotions . A key point of approaching 
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computer adaptability is to develop its functionality of understand- 

ing human affective behaviors [4] . This emerging research area is 

known as affective com puting [5–7] regarding the fact that most 

of the contemporary HCI systems suffer from the lack of intelli- 

gence for recognizing emotional cues related to human psycho- 

physiological states [8–10] . 

Emotions are known as a group of affective states of human 

being arising as responses to some stimuli from external envi- 

ronments or interpersonal events [11] . Different emotions possess 

critical influences on self-motivation generation and preferences of 

decision-making [12] . Representations of emotions include discrete 

scales in terms of angry, nervous, pleased, bored and so forth or 

using arousal-valence plane [13–15] . For the latter, 2-dimensional 

coordinates describe the nature of emotional experience via the 

core of the affections [16] . The arousal dimension is used to quan- 

tify different degrees from calm to excitement levels while the 

valence dimension indicates whether human feelings are positive 

(happy) or negative (sad) [17–20] . Fig. 1 shows a typical layout 
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Fig. 1. Arousal-valence plane. 

of the arousal-valence plane, where multiple discrete emotional 

states, e.g., neutral, cheerful, peaceful, depressing and angry, can 

be defined with different combinations of arousal and valence 

levels. 

1.2. Emotion recognition using physiological signals and pattern 

classifiers 

The function of an intelligent emotion estimator or classifier is 

to detect emotional clues from human reactions, integrate emo- 

tional responses and finally give the prediction of the transient 

emotional state. The corresponding approaches are mainly classi- 

fied as two categories, i.e., facial/vocal expressions [21] and phys- 

iological signals [22] . Due to specific users who are conditioned 

to be expressionless, the generalization capability of the behavior 

data may be limited [23,24] . On the other hand, physiological mea- 

sures that record electrophysiological information in real time from 

central nervous system (CNS) or peripheral nervous system (PNS) 

become attractive because of their the repeatability and objectiv- 

ity to infer human cognitive or affective state as well as ease of 

use with a portable implementation via wireless data transmission 

devices [25] . 

In well-documented works, the accessibility of various phys- 

iological signals for evaluating emotions has been investigated 

[26–34] . More specifically, emotion variation could be identified 

via electroencephalogram (EEG) from several frontal and parietal 

cortical areas. Verma and Tiwary indicated the EEG power spec- 

tral density (PSD) in alpha (8–13 Hz) band significantly varies with 

different valence levels [26] . Frantzidis et al. showed that an EEG 

feature subset of delta (1–4 Hz) and theta (4–7 Hz) PSD extracted 

from three central channels (Cz, Fz, and Pz) are quite useful for in- 

dicating both arousal and valence levels [28] . The phase synchro- 

nization and coherence between EEG channel pairs in the brain ar- 

eas with functional connectivity were found as effective emotion 

indicators [29] . The usability of event-correlated potential (ERP) 

was also examined. Konstantinidis et al. extracted the ERP com- 

ponents of N100 and N200 to classify emotions in arousal-valence 

plane [30] . Frantzidis et al. calculated P100 and P300 for emo- 

tion recognition [29] . In addition, the multimodal PNS physiolog- 

ical signals, e.g., galvanic skin response (GSR) [31] , electroocu- 

largram (EOG) [32] , electromyogram (EMG) [33] , and electrocardio- 

gram (ECG) [34] , were extensively explored. 

Considering high spatial and temporal resolutions of sophisti- 

cated CNS and PNS signal acquisition devices, machine learning 

approaches facilitate analyzing the massive volume of neurophys- 

iological data [35–39] . In particular, pattern classifiers could fuse 

physiological features of different modality. Recently, Iacoviello et 

al. have combined discrete wavelet transformation, principal com- 

ponent analysis (PCA) and support vector machine (SVM) to build a 

hybrid classification framework [38] . Khezri et al. employed three- 

channel forehead EEG combined with GSR to recognize six ba- 

sic emotions via K -nearest neighbors (KNN) classifiers [31] . Verma 

et al. [26] developed an ensemble classification approach fusing 

EEG, EMG, ECG, GSR, and EOG. Mehmood and Lee used indepen- 

dent component analysis to extract emotional indicators from EEG, 

EMG, GSR, ECG, and ERP [39] . 

Due to the superiority of abstracting high-dimensional physio- 

logical features, a number of deep learning approaches were in- 

vestigated for emotion classification and elicit promising results. 

The popular deep learning primitives include deep belief networks 

(DBN), stacked autoencoders (SAE) and convolutional neural nets 

(CNN). In particular, Wand and Shang adopted the standard DBN 

to extract features from raw physiological data based on unsuper- 

vised pre-training and build three deep classifiers to estimate the 

levels of arousal, valance, and liking [40] . The classification accu- 

racies of DEAP database are 60.9%, 51.2%, and 68.4%, respectively. 

Similarly, Li et al. adopted a two-layer DBN ensemble to fuse multi- 

channel EEG data in DEAP and the binary emotion classification 

accuracies of arousal and valence scales are 0.5840, and 0.6420, 

respectively [41] . Li et al. employed the supervised restrict Boltz- 

mann machine (RBM) to modify the standard DBN and proposed 

the supervised DBN based affective state recognition (SDA) model 

[42] . By using the EEG data of DEAP as the deep model inputs, the 

average AUC (i.e., the area under the receiver operating character- 

istic curve) score is 0.75. Jia et al. proposed the semi-supervised 

deep learning model (semi-DLM) based on DBNs for binary emo- 

tion classification [43] . The essential of the semi-DLM classifier is 

to utilize the label information for EEG channel selections instead 

of the pre-training procedure of the DBNs. The average AUC score 

of the liking scale in DEAP is 0.7890. Jirayucharoensak et al. com- 

bined the dimensionality reduction technique, i.e., PCA, with the 

standard SAE network to build emotion classifiers [44] . The de- 

signed SAE network possessed two hidden layers with 100 hidden 

neurons in each layer. Based on three levels of arousal and valence 

scales targeted in DEAP, the average classification accuracies are 

0.4952 and 0.4603, respectively. Besides the physiological signals, 

Acar et al. combined the CNN and SVM to identify four affective 

categories from the audio and visual modality of videos [45] . 

1.3. Motivation of the present study 

The brief literature review suggests the machine-learning-based 

methodologies are promising to reveal the latent patterns of cer- 

tain emotional states hidden in the physiological signals. In par- 

ticular, the deep classifiers are able to abstract the intermediate 

representations of physiological features in multiple modalities via 

hierarchical architectures. However, the deep network structure of 

emotion classifiers is usually selected based on the prior knowl- 

edge from other domains. Considering the nature of the high di- 

mensionality and limited training instances of the physiological 

data, transferring the empirical expertise from massive data prob- 

lems may not be always reliable. More specifically, too deep net- 

work with too many hidden neurons in each layer may lead to 

the severe model overfitting. The oversimplification and insuffi- 

cient abstraction of physiological features could arise when em- 

ploying too simple model structure. Hence, it is necessary to de- 

velop a physiological-data-driven approach to identify the optimal 

topology of the deep emotion classifier. 

On the other hand, the classifier ensemble has the capability to 

tackle the multimodality in physiological signals since it improves 
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