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a b s t r a c t

In this paper we investigate the parallelization of dual–primal isogeometric tearing and in-
terconnecting (IETI-DP) typemethods for solving large-scale continuous and discontinuous
Galerkin systems of equations arising from Isogeometric analysis of elliptic boundary value
problems. These methods are extensions of the finite element tearing and interconnecting
methods to isogeometric analysis. The algorithms are implemented by means of energy
minimizing primal subspaces.Wediscuss how thesemethods can efficiently beparallelized
in a distributed memory setting. Weak and strong scaling studies presented for two and
three dimensional problems show an excellent parallel efficiency.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Isogeometric Analysis (IgA) is a novel methodology for the numerical solution of partial differential equations (PDE). IgA
was first introduced by Hughes, Cottrell and Bazilevs in [1], see also the monograph [2] for a comprehensive presentation
of the IgA framework and the recent survey article [3]. The main principle is to use the same basis functions for describing
the geometry and to represent the discrete solution of the PDE problem under consideration. The most common choices
are B-Splines, Non Uniform Rational B-Splines (NURBS), T-Splines, Truncated Hierarchical B-Splines (THB-Splines), etc., see,
e.g., [4–6]. One of the strengths of IgA is the capability of creating high-order splines spaces, while keeping the number of
degrees of freedom quite small. Moreover, having basis functions with high smoothness is useful when considering higher-
order PDEs, e.g., the biharmonic equation.

In many cases the domain cannot be represented with a single mapping, referred to as geometrical mapping. Complicated
geometries are decomposed into simple domains, called patches or subdomains, which are the image of the unit cube through
a small parametrization. The set of patches forming the computational domain is called multipatch domain. The obtained
patch parametrizations and the original geometry may not be identical. The result are small gaps and overlaps occurring
at the interfaces of the patches, called segmentation crimes, see [7–9] for a comprehensive analysis. Nevertheless, one still
wants to solve PDEs on such domains. To do so, numerical schemes based on the discontinuous Galerkin (dG) method for
elliptic PDEswere developed in [10–12]. There, the corresponding error analysis is also provided. In addition to domainswith
segmentation crimes, the dG formulation is very useful when considering different B-Splines spaces on each patch, e.g., non-
matching grids at the interface and different spline degrees. An analysis for the dG-IgA formulation with extensions to low
regularity solutions can be found in [13]. For a detailed discussion of dG for finite element methods, we refer, e.g., to [14,15].

In the present paper, we are considering fast solutionmethods for linear systems arising from the discretization of elliptic
PDEs bymeans of IgA.We investigate non-overlapping domain decomposition (DD)methods of the dual–primal tearing and
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interconnecting type. This type of methods are equivalent to the so called Balancing Domain Decomposition by Constraints
(BDDC) methods, see [16–18] and references therein. The version based on a conforming Galerkin (cG) discretization, called
dual–primal isogeometric tearing and interconnecting (IETI-DP) method was first introduced in [19] and the equivalent IgA
BDDC method was analyzed in [20]. Further extensions to the analysis are presented in [21]. The version based on the dG
formulation, abbreviated by dG-IETI-DP,was introduced in [22] and analyzed in [23], see [24–26] for the corresponding finite
element counterparts.

The aim of this paper is to present the parallel scalability of the cG and dG IETI-DP methods. We investigate weak and
strong scaling in two and three dimensional domains for different B-Spline degrees. Our parallelization strategy is based on
a splitting of patches via increasing the multiplicity of knots at the desired interfaces, i.e., reducing the continuity there to
C0. We propose a hybrid cG-dG version, where we first use the dG version (C−1 continuity) to handle material interfaces
(jumping coefficients), non-matching meshes and different polynomial degrees, and as a second step using the cG version
with C0 interfaces for a further splitting of the single patches. As investigated in Section 6.4, enforcing C0 continuity on edges
or faces via knot multiplicity p yields only a small increase in the number of dofs. This approach leads to a great flexibility
in parallelization and to high efficiency in terms of the total CPU time. However, one has to keep in mind that for higher
order PDEs, the outlined procedure does not work, since higher smoothness than C0 is required, e.g., C1 in the case of the
biharmonic equation. In such cases, one could work with dG techniques, e.g., [27], or PDE-decomposition techniques [28],
where a fourth order problem is decomposed into a sequence of second order problems. In [29], the authors use the same
technique, i.e., the introduction of C0 interfaces at certain meshlines, to increase the performance of multifrontal sparse
direct solvers. However, in our work we use the additional C0 interfaces to provide a further decomposition of the patches
to increase the parallel scalability, whereas in [29] the C0 interfaces are used to reduce the interconnection of the dofs and
increase the serial performance of the direct solver. In [20,30], a different approach is presented, where fat interfaces are
used to keep the smoothness of the spaces of the interfaces. The advantage is to keep the total number of unknowns small,
however, at the cost of larger interfaces, larger number of primal variables and the need to use the deluxe scaling to obtain a
robustmethod. The recent publication [31] addresses this issue by using an adaptive selection of primal variables, resulting in
small coarse spaces. One obtains an efficient method, which seems to be a promising alternative to the method investigated
in the current work.

The implemented algorithms are based on energy minimizing primal subspaces, which simplify the parallelization of
the solver part, but having more effort in the setup phase (assembling phase). We rephrase key parts of this algorithm and
discuss how to realize the communication by means of Message Passing Interface (MPI). In general, FETI-DP and equivalent
BDDC methods are by nature well suited for large-scale parallelization and has been widely studied for solving large-scale
finite element equations, e.g., in [32–35] and [36], see also [37] for a hybrid OpenMP/MPI version. Considering a domain
decomposition with several ten thousands of patches, the influence of the coarse grid problem becomes more and more
significant. Especially, its LU-factorization is the bottleneck of the algorithm. The remedy is to reformulate the FETI-DP
system in such a way that the solution of the coarse grid problem is not required in the application of the systemmatrix, but
in the preconditioner. This enables the use of inexact methods like geometric or algebraic multigrid, see, e.g., [32,36,38–40].
Moreover, inexact solvers can also be used in the scaled Dirichlet preconditioner and, if using the saddle point formulation,
also for the local solvers, cf., [39], see also [32,33] and references therein for alternative approaches by means of hybrid FETI.
FETI-DPmethods have also been successfully applied to non-linear problems bymeans of a non-linear version of FETI-DP.We
want to highlight recent advances presented, e.g., in [36,38,41], showing excellent scalability on large-scale supercomputers.

In the present paper, we consider the following second-order elliptic boundary value problem in a bounded Lipschitz
domainΩ ⊂ Rd, with d ∈ {2, 3}: Find u : Ω → R such that

− div(α∇ u) = f inΩ, u = 0 on ΓD, and α
∂u
∂n

= gN on ΓN , (1)

with given, sufficient smooth data f , gN and α, where the coefficient α is uniformly bounded from below and above by some
positive constants αmin and αmax, respectively. The boundary ∂Ω of the computational domainΩ consists of a Dirichlet part
ΓD of positive boundarymeasure and aNeumannpartΓN . Furthermore,we assume that theDirichlet boundaryΓD is always a
union of complete patch sides (edges/face in 2d/3d)which are uniquely defined in IgA.Without loss of generality, we assume
homogeneous Dirichlet conditions. This can always be obtained by homogenization. By means of integration by parts, we
arrive at the weak formulation of (1) which reads as follows: Find u ∈ VD = {u ∈ H1

: γ0u = 0 on ΓD} such that

a(u, v) = ⟨F , v⟩ ∀v ∈ VD, (2)

where γ0 denotes the trace operator. The bilinear form a(·, ·) : VD × VD → R and the linear form ⟨F , ·⟩ : VD → R are given
by the expressions

a(u, v) :=

∫
Ω

α∇u · ∇v dx and ⟨F , v⟩ :=

∫
Ω

f v dx +

∫
ΓN

gNv ds.

The remainder of the paper is organized as follows: In Section 2, we give a short introduction to isogeometric analysis,
providing the basic definitions and notations. Section 3 describes the different discretizations of the model problem
obtained with the continuous and discontinuous Galerkin methods. In Section 4, we formulate the IETI-DP method for both
discretizations and provide implementation details. The way how the algorithm is parallelized is explained in Section 5.
Numerical examples are presented in Section 6. Finally we draw some conclusions in Section 7.



Download English Version:

https://daneshyari.com/en/article/4958357

Download Persian Version:

https://daneshyari.com/article/4958357

Daneshyari.com

https://daneshyari.com/en/article/4958357
https://daneshyari.com/article/4958357
https://daneshyari.com

