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a b s t r a c t

In this paper, nonlinear reconstructions of the space-dependent potential and/or damping
coefficients in the wave equation from Cauchy data boundary measurements of the dis-
placement and the flux tension are investigated. This is a very interesting and challenging
nonlinear inverse coefficient problem with important applications in wave propagation
phenomena. The uniqueness and stability results that are revised and in some cases proved
demonstrate an advancement in understanding the stability of the inverse coefficient
problems. However, in practice, the inverse coefficient identification problems under
investigation are still ill-posed since small random errors in the input data cause large
errors in the output solution. In order to stabilize the solution we employ the nonlinear
Tikhonov regularization method. Numerical reconstructions performed for the first time
are presented and discussed to illustrate the accuracy and stability of the numerical
solutions under finite difference mesh refinement and noise in the measured data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many practical applications related to wind, wave, seismic or noise excitations require reconstructing the applied
loadings/forces/sources from the knowledge of output responses. For example, in [1], time-dependent external forces in a
nonlinear damped vibration systemwere retrieved from the knowledge of the displacement and velocity at different times.
Another application of interest concerns distinguishing between various types of seismic events, e.g., explosion, implosion
or earthquake, which generate waves that propagate through the ground and can be recorded using seismometers. In [2], a
seismic source modelled as a point moment tensor in the elastic wave equation was estimated from time-dependent wave
formmeasurements. A final related application that ismentioned concerns inverse problems in ocean acoustics, inwhich the
point forces/sources of the ocean seafloor are determined from acoustic pressuremeasurements on an array of hydrophones,
see [3].

The above practical applications can be viewed in a unifiedmathematicalway as inverse force problems for the hyperbolic
wave equation

utt − Lu = F (x, t, u, ut ,∇u),

where the operatorL = ∇
2 is the Laplacian for homogeneousmedia, andL = c(x)∇2 orL = ∇ · (µ(x)∇) for inhomogeneous

media with positive physical properties c(x) orµ(x), see [4], and u(x, t) and F (x, t, u, ut ,∇u) are unknown displacement and
forcing term that need to be identified from prescribed initial and Cauchy, i.e. both Dirichlet and Neumann, boundary data.
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The linear casewhen the force F (x) depends only on the space variable xwas investigated in somedetail both theoretically
in [5–8], and recently, numerically in [9–11]. Also, the purely nonlinear case when the force F (u) depends only on the
displacement u, was investigated in [12]. More recently, inverse coefficient identification problems in which the force
expresses as F (x, u, ut ,∇u) = Q0(x)u+Q1(x)ut +Q2(x) ·∇u, with unknown space-dependent coefficients Q0(x), Q1(x) and/or
Q2(x), have been the point of interest of some theoretical studies, see [13–15]. In these studies, the powerful technique of
Carleman estimates was employed, see [6,16–19]. It is the purpose of this paper to make new mathematical and numerical
contribution along the lines of these nonlinear space-dependent coefficient identification problems for the wave equation.

The plan of the paper is as follows. In Section 2,we give the general setup of the inverse coefficient identification problems
(ICIPs) under investigation with particular analysis performed in Section 3. The uniqueness and conditional Lipschitz-type
stability of recovering the potential coefficient Q0(x) is known to hold in certain regular spaces of functions under the
assumption of a non-zero initial displacement, as reviewed in Section 3.1, but similar results for recovering the damping
coefficient Q1(x) are not so well-documented. Therefore, Section 3.2 is devoted to proving these new uniqueness and
conditional Lipschitz-type stability results given by Theorem 4 concerning the recovery of the space-dependent damping
coefficient. The proof is based on Carleman estimates for the wave equation with forcing terms and appropriate extensions
of solutions and coefficients to the negative time interval. The analysis requires non-zero initial velocity being prescribed,
which may be a practical limitation but this condition is essential for the applicability of the method of Carleman estimates
because we must choose/control an initial velocity whose sign is the same everywhere in the closure of the space domain.
However, if we change many times the initial displacement or velocity so as the union of their supports covers the closure
of the space domain, then the set of all corresponding observation data can yield the same uniqueness and stability results
of Theorems 1–4.

After theoretical analysis, Sections 4 and 5 describe the numerical methods used for solving the direct and inverse
problems based on the finite difference discretization and nonlinear constrained minimization using the MATLAB toolbox
routine lsqnonlin. Section 6 presents and discusses numerical results for the three ICIPs that are investigated. Various features
of the investigation include the case of partial Cauchy data, inversion of data contaminated with noise and regularization.
Finally, Section 7 presents the conclusions of the study and directions for possible future work.

2. Mathematical formulation

Consider a medium occupying a bounded region Ω in Rn, with a sufficiently smooth boundary ∂Ω , e.g. of class C2.
Throughout this paper, we assume that n = 1, 2, 3. For the case of higher dimensions, n > 3, we can argue similarly but we
have to assumemore regularity of solutions, and we do not discuss it here. Define the space–time cylinder QT = Ω × (0, T ),
where T > 0. We wish to find the displacement u(x, t) and the spacewise dependent coefficients Q0(x) and/or Q1(x) of the
lower-order terms in the hyperbolic wave equation

utt = ∇
2u + Q0(x)u + Q1(x)ut in QT . (1)

In Eq. (1),Q0 is called the potential coefficient, whilstQ1 is called the damping coefficient. In principle, we could add the extra
term Q2(x) ·∇uwith known or unknown vector coefficient Q2(x) to the right-hand side of (1), see [13,14], but this additional
extension will be investigated in a separate work.

The initial conditions are

u(x, 0) = ϕ(x), x ∈ Ω, (2)

ut (x, 0) = ψ(x), x ∈ Ω, (3)

where ϕ(x) and ψ(x) represent the initial displacement and velocity, respectively. On the boundary we can prescribe
Dirichlet, Neumann, Robin or mixed boundary conditions.

Let us consider, Neumann boundary conditions being prescribed, namely,
∂u
∂ν

(x, t) = q(x, t), (x, t) ∈ ∂Ω × (0, T ), (4)

where q is a given function.
If the functionsQ0 andQ1 are given, then Eqs. (1)–(4) form a direct well-posed problem. However, if some of the functions

Q0 and/or Q1 cannot be directly observed they hence become unknown and then clearly, the above set of equations is not
sufficient to determine uniquely the solution of the so-generated ICIP. In order to compensate for this non-uniqueness, we
consider the additional measurement given by the Dirichlet boundary data,

u(x, t) = P(x, t), (x, t) ∈ ∂Ω × (0, T ), (5)

where P is a prescribed boundary displacement. We can also consider the case when the boundary displacement Dirichlet
data (5) is being prescribed and it is the flux tension Neumann data (4) which is being measured.

Note that the unknowns Q0(x) and Q1(x) are interior quantities depending on the space variable x ∈ Ω ⊂ Rn, whilst the
additional measurement (5) is a boundary quantity depending on (x, t) ∈ ∂Ω × (0, T ).
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