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a b s t r a c t

In this paper, we propose the use of an efficient high-order finite difference algorithm
to price options under several pricing models including the Black–Scholes model, the
Merton’s jump–diffusionmodel, the Heston’s stochastic volatility model and the nonlinear
transaction costs or illiquidity models. We apply a local mesh refinement strategy at the
points of singularity usually found in the payoff of most financial derivatives to improve
the accuracy and restore the rate of convergence of a non-uniform high-order five-point
stencil finite difference scheme. For linear models, the time-stepping is dealt with by
using an exponential time integration scheme with Carathéodory–Fejér approximations
to efficiently evaluate the product of a matrix exponential with a vector of option prices.
Nonlinear Black–Scholes equations are solved using an efficient iterative scheme coupled
with a Richardson extrapolation. Our numerical experiments clearly demonstrate the high-
order accuracy of the proposed finite difference method, making the latter a method
of choice for solving both linear and nonlinear partial differential equations in financial
engineering problems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In financial engineering, several methods have been proposed in literature to improve the accuracy of numerical option
pricing algorithms. Low-order finite difference schemes for solving partial differential equations (PDEs) have been enhanced
through the common use of extrapolation techniques [1]. Unfortunately, extrapolation is highly dependent on the smooth
convergence of the numerical methods underhand and can give inaccurate results if the convergence rate is too erratic. In
[2–4], the authors have used spectral methods to improve the accuracy of European style options under one-dimensional
models. However, thesemethods require the solutions of dense linear systems inRN×N which haveO(N3) complexity,where
N represents the number of nodes used to discretise the spatial domain. Although such schemes give accurate results for
European options, they are less efficient for American options because spectral convergence is usually not achieved due to
the difficulty in accurately capturing the free boundary location [5]. On the other hand, [6–8] have developed high-order
compact (HOC) schemes which have linear complexity when computing the option prices. However, the derivation of these
schemes involves the differentiation and intricate manipulations of the PDE at hand in order to replace the higher order
derivatives in the leading truncation error terms [6]. Such an approachwill be generallymore difficult to implement for PDEs
with variable and time dependent coefficients such as those that arise in the nonlinear Black–Scholes equations. Moreover,
it is well known that the point of singularity that exists at the strike price hampers the order of convergence of these HOC
discretisations. So far, one of the best remedial approaches was suggested in [7] where a local mesh refinement strategy is
applied by adding four nodes in the vicinity of that point of singularity at each refinement stage.
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When the assumptions of no transaction costs and a perfectly liquid market are relaxed, the Black–Scholes pricing PDE
becomes nonlinear. Such problems do not admit closed-form solutions even for vanilla options, and since the nonlinear term
is found in the diffusion coefficient, the problem becomes stiff. Numerically, this requires stability restrictions to be imposed
on the time step if an explicit scheme is used to discretise this nonlinear term [9]. In [10], the second-order derivative
within the nonlinear coefficient is approximated over twice the spatial mesh size used to discretise the derivatives with
linear coefficients. Although this strategy helps to improve the stability of the implicit–explicit type of schemes, it does
not completely alleviate the problem. More recently, splitting methods based on locally one-dimensional (LOD) backward
Euler (implicit) method [11] and on LOD Crank–Nicolson method [12] have been suggested to solve the nonlinear Black–
Scholes equations. Even though explicit formulae could be obtain while implementing the stable first-order implicit and
second-order Crank–Nicolson schemes, restrictive positivity-preserving conditions on the time step are required to obtain
convergent solutions to the exact solution. We also want to mention that [13,14] have proposed high-order schemes for the
numerical solution of the nonlinear Black–Scholes equation, but since their methods did not cater for the singularities in the
payoff functions, only a lower order convergence could be observed.

Stochastic volatility models have been developed in order to produce option prices that better describe the volatility
smiles and skews of real market data, and one of the most popular stochastic volatility model is the Heston’s model [15].
Several numerical methods, namely finite element-finite volume methods [16,17], spectral element approximations [18]
andmethod of line approaches [19] among others, have been proposed to price options under this model. The resulting two-
dimensionality of the problem and the presence of second-ordermixed spatial partial derivatives complicate the application
of high-order schemes in the pricing of financial derivatives. Indeed, in [20], the derivation of a HOC scheme for the Heston’s
model imposes the mesh size along each spatial direction to be equal, which can be quite restrictive. More recently, [5,21]
have used the grid transformation of [22] which concentrates grid nodes at the strike price to build high-order schemes for
stochastic volatility models. But this requires the evaluation of the Jacobian and the Hessian of transformations which are
not very practical for multiple points of singularity.

In this paper, we propose to use the non-uniform discretisation due to Bowen and Smith [23] for option pricing since
such discretisation confers the following advantages over classical spatial discretisation as it:

• grants us with added flexibility to construct our grid such that refinement points can be easily added in the vicinity
of several singular points,

• helps to reduce the number of computational nodes used, whereby far-field boundary conditions [24] can be naturally
implemented using a coarse grid to extend our computational domain without the use of complex artificial boundary
conditions [25–27], and this significantly improves the efficiency and practicality of the PDE approach,

• results in banded pentadiagonal linear systems which have the same linear computational complexity as for
tridiagonal linear systems,

• gives high-order convergent prices for European options, path dependent options such as barrier options and
American options,

• gives high-order convergence for the nonlinear Black–Scholes and the Heston’s two-dimensional problems,

and these of course, represent themain contributions of the presentwork.We also show how to solve the integro term in the
Merton’s jump–diffusion model in O(N) computations per time step improving on the O(N logN) in [7,28]. Recently, [29]
have used a second-order finite difference discretisation in space with a discontinuous Galerkin finite element in time to
solveMerton’s partial integro-differential equation. However, themultigrid algorithmused to solve the dense linear systems
is less efficient compared to our proposed scheme which solves only sparse linear systems. Our non-uniform pentadiagonal
scheme can be easily combined with an exact in time exponential time integration scheme [2,3,30,31] to generate highly
accurate option prices. An efficient iterative scheme [32] coupled with a repeated extrapolation technique [33] is further
proposed to solve the nonlinear problems.

The paper is structured as follows. In Section 2,we describe the different option pricing problems andmodels thatwe later
consider in our numerical experiments. In Section 3, we give the high-order non-uniform finite difference approximations
used in space and we explain the local mesh refinement strategy used to restore the high-order convergence rate. We then
describe the time-stepping schemes for both linear and nonlinear problems, and we briefly discuss the stability analysis of
the proposed scheme. Section 4 numerically demonstrates the efficiency and accuracy of the new scheme for option pricing,
and finally, we conclude in Section 5 where we also give some promising scope for future work.

2. Option pricing

We state here the different pricing problems and models that we shall study in this paper. Under the classical Black–
Scholes model, we aim at pricing various types of options which have payoffs involving different points of singularity. This is
to demonstrate the versatility of our approach. Then, we consider various types of nonlinear Black–Scholes PDEs arising from
popular transaction costs and illiquidity models. Further, we show how pricing can be extended to other realistic models
like the Merton’s jump–diffusion and Heston’s stochastic volatility models.
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