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a b s t r a c t

We study a semilinear elliptic equation involving critical weighted Hardy–Sobolev expo-
nents with boundary singularities. The existence and multiplicity of positive solutions are
established. Our method relies upon Ekeland’s variational principle and Mountain Pass
Lemma.
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1. Introduction and main results

In this paper, we consider the following semilinear elliptic equation⎧⎨⎩−div(|x|−2a
∇u) − µ

u
|x|2(1+a) =

|u|p−2u
|x|bp

+ λf (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1)

whereΩ is an open bounded domain in RN (N ≥ 3) with C2 boundary ∂Ω and 0 ∈ ∂Ω , 0 ≤ a <
√
µ,µ

△
=

(N−2)2
4 , 0 ≤ µ <

(
√
µ−a)2, a ≤ b < a+1, p = p(a, b)

△
=

2N
N−2(1+a−b) is the critical weighted Hardy–Sobolev exponent and 2∗ △

= p(a, a) =
2N
N−2

is the critical Sobolev exponent, λ > 0 is a real parameter and f ∈ C(Ω×R+,R). Since we consider the existence of positive
solutions of the problem (1), it is obvious that the values of f (x, t) for t < 0 are irrelevant, so we may define f (x, t) = 0 for
x ∈ Ω, t ≤ 0.

The problem (1) has the following form

− div (A(x)∇u) = g(x, u), (2)

where A(x) is a nonnegative function which may be unbounded at some points. It is well known that Eq. (2) arises from the
consideration of standing waves in the anisotropic Schrödinger equation. If a = b = µ = 0 and f (x, u) = u, Eq. (1) reduces
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to ⎧⎨⎩−1u = |u|2
∗
−2u + λu, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(3)

which has been studied in the celebrated paper [1].
In recent years, much attention has been paid to the singular elliptic problems with critical weighted Hardy–Sobolev

exponents (the case that a ̸= 0, b ̸= 0) or critical Hardy–Sobolev exponents (the case that a = 0, b ̸= 0) (see [2–10]
and so on), mainly when 0 ∈ Ω . For example, in [4], Song and Tang considered the multiple of positive solutions for Robin
problem involving critical weighted Hardy–Sobolev exponents with boundary singularities. In [6], Nyamoradi studied the
multiplicity of positive solutions to some weighted nonlinear elliptic system involving critical exponents. For the boundary
singularities problems (0 ∈ ∂Ω), which have been studied by a lot of researchers yet (see [11–14] and the references therein).
In particular, let us recall that, in [11], Shang considered the following semilinear elliptic problem:⎧⎨⎩−△u − µ

u
|x|2

=
|u|2

∗(s)−2

|x|s
u + λf (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

(4)

By Ekeland’s variational principle and Mountain Pass Lemma, he proved existence of two positive solutions when λ is less
than some constant for problem (4). In [15], Ghoussoub and Kang proved the existence of the best Hardy–Sobolev constant in
H1

0 (Ω) when N ≥ 4 and the principle curvatures of ∂Ω are negative. Besides, if f (x, t) = t in problem (4), they also obtained
a weak solution under the assumptions N ≥ 4, µ = 0, 0 < λ < λ1 (the first eigenvalue of operator −1 on H1

0 (Ω)) and
the principle curvatures are non-positive. In [12], Chern and Lin proved the existence of the best weighted Hardy–Sobolev
constant with the singularity on the boundary. As far as we know, the Dirichlet problem with critical weighted Hardy–
Sobolev exponents and boundary singularities has not yet been studied.

In the present paper,motivated by [11,15],wedo some studies for suchproblem. Firstly, by Ekeland’s variational principle,
we establish the existence of a positive local minimum for the associated functional. Due to the lack of compactness
of the embedding in H1

0 (Ω, |x|
−2a) ↪→ L2

∗

(Ω), the classical Palais–Smale condition in H1
0 (Ω, |x|

−2a) fails to satisfy for
the energy functional of problem (1), where H1

0 (Ω, |x|
−2a) denotes the completion of C∞

0 (Ω) with the standard norm
∥u∥H =

∫
Ω

|x|−2a
|∇u|2dx. However, according to the method of Brezis and Nirenberg in [1], we can prove that the energy

functional satisfies Palais–Smale conditionwithin value range, then use theMountain Pass Theorem to find a second positive
solution by a translated functional. Assume that f satisfies the following conditions:

(f1) limt→0+
f (x,t)

t = +∞ and limt→+∞
f (x,t)
tp−1 = 0 uniformly for x ∈ Ω .

(f2) f : Ω × R+
→ R is nondecreasing with respect to the second variable.

Before stating our main results, we first explain the notations and conventions used throughout this paper. We denote
by

H := H1
0 (Ω, |x|

−2a).

Now we define precisely what we mean by weak solutions to the problem (1).

Definition 1. A function u ∈ H is said to be a weak solution to (1) if for any v ∈ H , there holds

⟨I ′(u), v⟩ =

∫
Ω

(
|x|−2a

∇u∇v − µ
uv

|x|2(1+a)

)
dx −

∫
Ω

(u+)p−1v

|x|bp
dx − λ

∫
Ω

f (x, u+)vdx.

Our main results read as follows:

Theorem 1. Suppose that N ≥ 3, a <
√
µ, 0 ≤ µ < (

√
µ − a)2, a ≤ b < a + 1, (f1) hold. Then there exists λ∗ > 0 such that

the problem (1) has at least one positive weak solution uλ for any λ ∈ (0, λ∗).

Theorem 2. Suppose that N ≥ 3, a <
√
µ, a ≤ b < a+ 1, (f1), (f2) hold. Then there exists λ∗ > 0 such that the problem (1) has

at least two positive weak solutions for any λ ∈ (0, λ∗) under one of the following conditions:
(a) 0 ≤ µ ≤ (

√
µ− a)2 −

1
4 , b − a > N+2

2N+2 ;
(b) the principle curvatures of ∂Ω at 0 are negative and 0 ≤ µ ≤ (

√
µ− a)2 − ( 14 + a2 − a), a < N−1

4 , a < b < a + 1;

(c) the principle curvatures of ∂Ω at 0 are negative and 0 ≤ µ ≤ (
√
µ− a)2 − (1 + a2 − 2a), a < N

4 , b = a > 0;
(d) the principle curvatures of ∂Ω at 0 are non-positive, 0 ≤ µ ≤ min{(

√
µ−a)2−( 14 +a2−a), (

√
µ−a)2− ((1+a−b)p)2

4 }, a <
N−1
4 , a + θ < b < a + 1, θ =

−N2
+9N−6

6(N−1) , 4 ≤ N ≤ 8;

(e) the principle curvatures of ∂Ω at 0 are non-positive, 0 ≤ µ ≤ min{(
√
µ−a)2−( 14 +a2−a), (

√
µ−a)2− ((1+a−b)p)2

4 }, a <
N−1
4 , a < b < a + 1, N ≥ 9;
(f) the principle curvatures of ∂Ω at 0 are non-positive, 0 ≤ µ ≤ min{(

√
µ−a)2−(1+a2−2a), (

√
µ−a)2− ((1+a−b)p)2

4 }, a <
N
4 , b = a > 0, N ≥ 10.
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