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a b s t r a c t

In this paper, we investigate error estimates and superconvergence of a mixed finite
elementmethod for elliptic optimal control problems. The gradient for ourmethod belongs
to the square integrable space instead of the classical H(div; Ω) space. The state and co-
state are approximated by the P2

0–P1 (velocity–pressure) pair and the control variable is
approximated by piecewise constant functions. First, we derive a priori error estimates in
H1-norm for the state and the co-state scalar functions, a priori error estimates in (L2)2-
norm for the state and the co-state vector functions and a priori error estimates in L2-
norm for the control function. Then, using postprocessing projection operator, we derive
a superconvergence result for the control variable. Next, we get a priori error estimates
in L2-norm for the state and the co-state scalar functions. Finally, a numerical example is
given to demonstrate the theoretical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, optimal control problems governed by partial differential equations have been widely studied and
applied in the science and engineering numerical simulation. Various numericalmethods have been developed to solve these
optimal control problems, among them, the finite element approximation of optimal control problems has been extensively
studied in the literature. It is impossible to even give a very brief review here. For the studies about convergence and
superconvergence of finite element approximations for optimal control problems, see, for example, [1–13]. A systematic
introduction of finite element methods for PDEs and optimal control problems can be found in, for example, [14,15].

Although finite element method has successfully simulated a lot of optimal control problems, it fails to solve a certain
class of optimal control problems, in which the objective functional contains not only the primal state variable, but also its
gradient. For example, in the flow control problem, the gradient stands for Darcy velocity and it is an important physics
variable, or, in the temperature control problem, large temperature gradients during cooling or heating may lead to its
destruction. Thus, mixed finite element methods will be the best choice for these control problems. Chen et al. have done
some works on a priori error estimates and superconvergence properties of Raviart–Thomas mixed finite elements for
optimal control problems, see, for example, [16–18]. In [17], Chen used the postprocessing projection operator, which was
defined byMeyer and Rösch (see [4]) to prove a quadratic superconvergence of the control bymixed finite elementmethods.
Recently, the authors derived error estimates and superconvergence of mixedmethods for convex optimal control problems
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in [18]. In [19], Guo, Fu and Zhang discussed a splitting positive definite mixed finite element method for elliptic optimal
control problem and derived a priori error estimates.

In the recent years, Chen et al. [20] developed a newmixed finite element scheme and used P2
0–P1 finite element pair for

solving partial differential equations. The gradient of the primal variable for this method belongs to the square integrable
space instead of the classical H(div; Ω) space. Using this method, we can derive two approximations for the gradient of the
primal variable y, one is the numerical approximation solution ph, the other is the derivative of the approximation solution
yh.

The goal of this paper is to derive a priori error estimates and superconvergence of a new mixed finite element
approximation for an elliptic control problem. At first, we will construct new mixed finite element approximation scheme
and derive the optimality condition. Then, we introduce some projections and their properties, and prove a priori error
estimates for the control variable, the state variables and the co-state variables. Next, we shall derive a superconvergence
result for the control variable by using a postprocessing projection operator. At last, we present a numerical experiment to
verify the theoretical results. To the best of our knowledge the results are new to the literature concerning a priori error
analysis for the new mixed finite element method for elliptic optimal control problems.

We consider the following linear optimal control problems for the state variables p, y, and the control u with pointwise
control constraint:

min
u∈Uad

{
1
2
∥p − pd∥

2
+

1
2
∥y − yd∥2

+
ν

2
∥u∥2

}
(1.1)

subject to the state equation

− div(A(x)∇y) + cy = f + u, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divp + cy = f + u, p = −A∇y, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a bounded domain in R2. Uad denotes the admissible set of the control variable, defined by

Uad = {u ∈ L2(Ω) : a ≤ u ≤ b, a.e. in Ω}, (1.5)

where the bounds a, b ∈ R fulfill a < b. We assume that c ≥ 0, c ∈ L∞(Ω), yd ∈ H1(Ω), pd ∈ (H1(Ω))2 and ν is a fixed
positive number. The coefficient A(x) = (aij(x)) is a symmetric matrix function with aij(x) ∈ W 1,∞(Ω), which satisfies the
ellipticity condition

a∗|ξ |
2

≤

2∑
i,j=1

aij(x)ξiξj ≤ a∗
|ξ |

2, ∀ (ξ, x) ∈ R2
× Ω̄, 0 < a∗ < a∗.

The plan of this paper is as follows. In Section 2, we construct our new mixed finite element approximation scheme for
the optimal control problem (1.1)–(1.4) and give its equivalent optimality conditions. The main results of this paper are
stated in Sections 3 and 4. In Section 3, we derive a priori error estimates in H1-norm for the state and the co-state scalar
functions, a priori error estimates in (L2)2-norm for the state and the co-state vector functions and a priori error estimates in
L2-norm for the control function. In Section 4, using postprocessing projection operator, we derive a superconvergence result
for the control variable. Next, we can get a priori error estimates in L2-norm for the state and the co-state scalar functions. In
Section 5, we present a numerical example to demonstrate our theoretical results. In the last section, we briefly summarize
the results obtained and some possible future extensions.

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω with a norm ∥ · ∥m,p given by ∥v∥
p
m,p =∑

|α|≤m∥Dαv∥
p
Lp(Ω), a semi-norm |·|m,p given by |v|

p
m,p =

∑
|α|=m∥Dαv∥

p
Lp(Ω). We set Wm,p

0 (Ω) = {v ∈ Wm,p(Ω) : v|∂Ω = 0}.
For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm

0 (Ω) = Wm,2
0 (Ω), and ∥ · ∥m = ∥ · ∥m,2, ∥ · ∥ = ∥ · ∥0,2. In addition C denotes a

general positive constant independent of h, where h is the spatial mesh-size for the control and state discretization.

2. Mixed methods for optimal control problems

In this section, we shall construct our newmixed finite element approximation scheme of the control problem (1.1)–(1.4).
For sake of simplicity, we assume that the domain Ω is a convex polygon.

Let

V = (L2(Ω))2 and W = H1
0 (Ω). (2.1)
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