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a b s t r a c t

We present a high-order finite difference scheme for Navier–Stokes equations in irregular
domains. The scheme is an extension of a fourth-order scheme for Navier–Stokes equations
in streamfunction formulation on a rectangular domain (Ben-Artzi et al., 2010). The
discretization offered here contains two types of interior points. The first is regular interior
points, where all eight neighboring points of a grid point are inside the domain and not
too close to the boundary. The second is interior points where at least one of the closest
eight neighbors is outside the computational domain or too close to the boundary. In the
second case we design discrete operators which approximate spatial derivatives of the
streamfunction on irregular meshes, using discretizations of pure derivatives in the x, y
and along the diagonals of the element.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paperwe are interested in high-order discretizations of theNavier–Stokes equations. TheNavier–Stokes equations
play a central role in modeling fluid flows. Here we focus on incompressible flows. It is well-known that this systemmay be
represented in pure streamfunction formulation as follows (see [1,2]).

∂t∆ψ + ∇
⊥ψ · ∇∆ψ − ν∆2ψ = f (x, y, t),

ψ(x, y, t) = ψ0(x, y).
(1.1)

Recall that ∇
⊥ψ = (−∂yψ, ∂xψ) is the velocity vector. The no-slip boundary condition associated with this formulation is

ψ =
∂ψ

∂n
= 0, (x, y) ∈ ∂Ω, t > 0 (1.2)

and the initial condition is

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω. (1.3)

In this paper we extend the fourth-order scheme [3] to irregular domains. The strategy used here is to present the
biharmonic operator ∂4x +2∂2x ∂

2
y +∂4y as a combination of pure fourth-order derivatives in the x, y and the diagonal directions

η = (x + y)/
√
2, ξ = (y − x)

√
2. Then, the pure fourth-order derivatives may be approximated via a compact scheme
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using the values of the function and its directional derivatives (see also [4,5]). An alternative approach is to construct a
two-dimensional polynomial which collocates the values of the function and its directional derivatives at the corners of the
irregular element and then approximate the biharmonic of the function by the biharmonic of this polynomial (see [6]).

The numerical resolution of the Navier–Stokes system, governing viscous, incompressible, time-dependent flow, has
been an important challenge of computational fluid dynamics. References belonging to the class of finite differencemethods
for the approximation of Navier–Stokes equations include projectionmethods [7–11]. The pure-streamfunction formulation
for the time-dependent Navier–Stokes system in planar domains has been used in [12–14] some twenty years ago. It has
been designed primarily for the numerical investigation of the Hopf bifurcation occurring in the driven cavity problem. Their
approach was based on a finite-difference method. The application of various compact schemes to the pure streamfunction
formulation is fairly recent [15–19].

We review some numerical methods for irregular domains. There are many references for finite elements methods for
irregular domain (see for the example [20,21]). Several references for finite difference methods include [22–24]. In [24] a
six-point scheme (star)was suggested. The disadvantage of the latter is its singularity and ill-conditioning. Several references
such as [25] use coordinates transformation, however this approach is not suited to multiple irregular boundaries and may
also impose singularities due to the coordinate transformation.

Liszka and Orkisz stated in [26] (1980) that ‘‘The fascination for FEM, however, caused by enormous successes or simply
by fashion, has resulted in a relative stagnation in some other methods, especially in finite difference methods’’. In [26] a
new mesh generation was constructed.

In [27,5] parabolic equations (in particular the heat equation) were solved in irregular domain, where a cartesian grid
was used to approximate the solution of a time-dependent diffusion problem. At near boundary points the derivatives ∂2x
and ∂2y were approximated using a non-uniform mesh, where one of the neighbors of the computational point was taken
as a boundary point. In [28] Colella et al. suggested an embedded boundary/volume method for Navier–Stokes equations
in irregular domains. It is a combination of finite differences, embedded boundary algorithm and finite volume methods.
Calhoun [29] approximates the vorticity–streamfunction formulation by adding a correction term to the Poisson equation
(which relates the streamfunction to the vorticity) using the immersed interfacemethod. The purpose of this correction is to
impose both boundary conditions on the streamfunction and the singular sources for the vorticity equation. The numerical
results show second-order convergence rates for the solution of the Navier–Stokes equations. In [30] a fast finite difference
method is proposed to solve the incompressible Navier–Stokes equations on a general domain. The method is based on the
vorticity stream-function formulation and a fast Poisson solver defined on a general domain using the immersed interface
method.

In [31] the discretization of the Poisson equation on irregular domains at near boundary points was carried out via
quadratic polynomials, which yields second-order accuracy of the scheme. In [32] second and fourth order Cartesian grid
finite difference methods were developed for second order elliptic and parabolic partial differential equations on irregular
domains. The information around an irregular point was completed via a two-dimensional Taylor expansion around a
boundary point using a local coordinate system. In [33] the immersed interface method is invoked for the application
of the boundary conditions to the velocity–pressure formulation of Navier–Stokes equations. The approximated rates of
convergence are between 2 and 3. In [34] the Poisson equation which relates the streamfunction to the vorticity was solved
in two steps in order to enhance the efficiency of the scheme.

In [6,2] a two-dimensional interpolating polynomial of degree 5 and a half was constructed to approximate the solution
of the biharmonic problem. This polynomial collocates the values of the function and its directional derivatives at the corners
of an irregular element near the boundary (as well as of regular inner elements) and then approximates the biharmonic of
the solution by the biharmonic of this polynomial. Fourth-order accuracy was achieved for the biharmonic problem in a
circle and an ellipse.

In this paper we approximate spatial derivatives of the Navier–Stokes equations in streamfunction formulation. Interior
points are treated via fourth-order discretizations as in [3]. Irregular elements are formed near the boundary, as in [6]. For
irregular elements we write the biharmonic operator, as well as the convective term, using pure derivatives only in the
directions of the axis and the diagonals of the element. Then, one-dimensional interpolating operators are used for these
elements. Note that in [35] we have proved that the solution of the one-dimensional biharmonic equation by our compact
high-order scheme is fourth-order accurate. Thus, it may be proved that reduction to our scheme to one dimension is fourth-
order accurate (see also [36]).

The outline of the paper is as follows. In Section 2 we describe fourth order approximations of the Navier–Stokes
equations in regular domains. All spatial operators appearing in the evolution equation, i.e., the Laplacian, the biharmonic
operator and the nonlinear convective term, are approximated via fourth-order schemes.We also describe a time-marching
scheme for the temporal evolution.

In Section 3we suggest a new scheme for the Navier–Stokes system in streamfunction formulation for irregular domains.
Here we assign different flags to the cartesian grid points in the rectangle, in which the irregular domain is embedded. At
near-boundary points we approximate the spatial operators via combinations of pure spatial derivatives in the directions
of the axis x, y and the diagonals.

In Section 4we detail the approximations of ∂xψ, ∂4xψ and ∂2xψ for an irregular element. Similar representations are valid
to ∂yψ, ∂4yψ and ∂2yψ . The fourth-order derivatives along the diagonals, ∂4ηψ and ∂4ξψ , are approximated in the same fashion.
In Section 5 we describe the approximation of the convective term at near boundary points. This involves discretizations
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