
Computers and Mathematics with Applications () –

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

High performance shallow water kernels for parallel
overland flow simulations based on FullSWOF2D
Roland Wittmann ∗, Hans-Joachim Bungartz, Philipp Neumann
Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Vectorization
Overland flows
Shallow water equations
High performance kernels

a b s t r a c t

We describe code optimization and parallelization procedures applied to the sequential
overland flow solver FullSWOF2D. Major difficulties when simulating overland flows
comprise dealing with high resolution datasets of large scale areas which either cannot
be computed on a single node either due to limited amount of memory or due to too many
(time step) iterations resulting from the CFL condition. We address these issues in terms
of two major contributions. First, we demonstrate a generic step-by-step transformation
of the second order finite volume scheme in FullSWOF2D towards MPI parallelization.
Second, the computational kernels are optimized by the use of templates and a portable
vectorization approach. We discuss the load imbalance of the flux computation due to dry
and wet cells and propose a solution using an efficient cell counting approach. Finally,
scalability results are shown for different test scenarios along with a flood simulation
benchmark using the Shaheen II supercomputer.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decade we observe an increase in the number and intensity of floods world-wide. These floods cause
widespread destruction as well as losses of human lives and economic property. Efficient simulation of these events at
larger scales (e.g. 10–100 km2) and at high resolution is required to, e.g., design adequate countermeasures in the long term
and to provide accurate forecasts in the case of immanent extremeweather events. Various efforts have been undertaken in
this regard: In [1], Huang et al. use a quasi-2D modeling approach to reduce the computational work for simulating floods
along the Elbe River in Germany, and compare the results to a 2D finite volume code. Sanders et al. [2] have developed a
parallel unstructured grid code, called ParBreZo, to simulate flood events on a regional scale.

The simulation of overland flows posesmajor challenges with respect to numerical algorithms and their efficient parallel
implementations. Different numerical algorithms are still being developed either using explicit or (semi-) implicit [3] time
stepping schemes. While explicit methods allow for simple implementations and parallelization, they suffer from very
small time steps due to the Courant–Friedrichs–Levy (CFL) condition when using high resolution datasets. Though implicit
methods allow larger time steps for these kinds of scenarios, they require the solution of a sparse linear equation system in
each time step. This becomes expensive and yields more challenges for efficient parallelization. Besides, one has to properly
treat drying andwetting of areas in the computational domain. On the implementational side, this usually requires different
implementations through branches to select the appropriate scheme for dry or wet areas. On the one hand, this may cause
a severe load imbalance because the computation of numerical fluxes in dry areas is cheaper than the computation in

∗ Corresponding author.
E-mail addresses: roland.wittmann@mytum.de (R. Wittmann), bungartz@in.tum.de (H.-J. Bungartz), philipp.neumann@tum.de (P. Neumann).

http://dx.doi.org/10.1016/j.camwa.2017.01.005
0898-1221/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2017.01.005
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:roland.wittmann@mytum.de
mailto:bungartz@in.tum.de
mailto:philipp.neumann@tum.de
http://dx.doi.org/10.1016/j.camwa.2017.01.005

2 R. Wittmann et al. / Computers and Mathematics with Applications () –

wet areas. On the other hand, the optimization of these potentially dynamic branches is still a big challenge for today’s
compilers. While compilers are able to efficiently optimize branches which simply switch between single values, branches
such as in the drying/wetting case may require completely different computational approaches, effectively preventing
autovectorization of large code parts. However, efficient vectorization is crucial to harness the capabilities of today’s
computer architectures with respect to computational speed and efficient use of memory bandwidth. Bader et al. studied
for example the implementation of augmented Riemann solvers which benefit from compiler-based auto-vectorization [4].

In this paper, we demonstrate how we can benefit from the object-oriented design to incorporate parallelism and highly
efficient kernels using vectorization and templates into existing flooding simulations. For this purpose, wemake use of the solver
package ‘‘Full Shallow Water equations for Overland Flow’’ (FullSWOF2D) [5]. This finite-volume solver was specifically
designed for the simulation of flooding and respective drying/wetting scenarios. Its object-oriented C++-based design allows
for modular extensions and modifications. FullSWOF2D operates on a regular Cartesian grid which is beneficial with regard
to the application of optimization techniques. However, the code itself does not offer any form of parallelism yet although
there has already been an attempt using SkelGIS [6] before, comparing it with a MPI implementation. Recently, Unterweger
et al. [7] demonstrated how FullSWOF2D can be used in an adaptive mesh refinement context to simulate rain-induced
overland flows through adaptive local time stepping using the software package PeanoClaw.

The remainder is structured as follows: in Section 2, we briefly summarize the hyperbolic system of balance equations
based on the shallow-water model and the corresponding source terms along with the numerical methods. We continue
with a step-by-step transformation of the original code towards a parallelized algorithm usingMPI in Section 3. In Section 4,
we optimize the performance bottlenecks using templates as a main building block. We further discuss issues for auto-
vectorization which motivates our design for a portable vectorization concept to deal with cases where auto-vectorization
fails. Using this concept we have developed a fully AVX-based version of the Harten–Lax–van Leer-Contact (HLLC) Riemann
solver for the shallow water equations. The used optimization techniques are not limited to purely regular Cartesian grids,
but they can also be used for block-structured grids and unstructured grids as well. In [8], a concept for block-structured
grids is discussed which allows the dynamic fusion of grids. Hence, smaller grids from the leaf nodes are then replaced
by bigger grids in refined nodes of an adaptive mesh refinement tree. This approach allows a more efficient application of
auto-vectorization andmanual vectorization techniques at the expense of additionalmemory copieswhile still being able to
benefit from adaptivemesh refinement. In the case of unstructured grids, in [9] the authors present a GPU implementation of
a shallowwater solver on an unstructured triangular grid using CUDA. Their implementation uses three accumulator arrays
to track the contributions along the three edges of each triangular volume and the corresponding neighboring volumes. The
size of these arrays is determined by the number of volumes in the grid and they parallelize over all edges. Our presented
vectorization technique may be applied to their concept by adjusting the intrinsics for re-combining vector contents with
respect to the neighboring volumes along each edge. Nevertheless, depending on the traversal scheme at hand this may
require an additional pre-sorting step on a subset of grid cells to ensure that the vector intrinsics always combine the right
neighbors, independent of the current selection of neighbors. Further, we embedded a novel dry-cell handling mechanism
which only requires a single branch for a set of cells instead of a branch for each cell to effectively deal with load imbalances.
We demonstrate the effectiveness of our approach for two extreme case scenarios, cf. Section 5. In Section 6, we show
the benefits of our transformations and optimization by applying the optimized FullSWOF software to the simulation of a
flooding in Glasgow, United Kingdom. We close with a short summary in Section 7 and give an outlook to future work.

2. FullSWOF2D and the shallow water equations

FullSWOF2D solves the shallow water equations

∂th + ∂x(hu) + ∂y(hv) = R − I

∂t(hu) + ∂x

hu2

+
gh2

2

+ ∂y(huv) = gh(S0x − Sfx)

∂t(hv) + ∂x(huv) + ∂y

hv2

+
gh2

2

= gh(S0y − Sfy)

−∂xzb(x, y) = S0x
−∂yzb(x, y) = S0y

(1)

using a finite volume discretization. The variable h denotes thewater height above ground, zb the height of the topography, u
and v denote the velocities in x and y direction, respectively. The rain intensity is determined by R, I specifies the infiltration
rate. The gravity is given by parameter g . The spatial topography gradients ∂xzb and ∂yzb are defined by the negative slopes S0x
and S0y in x and y direction, respectively. The shallowwater equations (1) are solved numerically in 10 steps, cf. Fig. 1. In steps
1 and 5, the boundary conditions depending on the user’s choice are set in the boundary layer of the grid. FullSWOF2D offers
wall boundary conditions, Neumann conditions, imposed discharge height and imposed discharge momentum conditions
as well as periodic boundaries. In steps 2 and 6, a reconstruction method is applied to achieve second order in space,
either based onMonotoneUpstream-centered Schemes for Conservation Laws (MUSCL) or EssentiallyNon-Oscillatory (ENO)
schemes. For the details of both schemes, we refer to [10]. The fluxes are computed in step 3 using the values from step 2

Download English Version:

https://daneshyari.com/en/article/4958429

Download Persian Version:

https://daneshyari.com/article/4958429

Daneshyari.com

https://daneshyari.com/en/article/4958429
https://daneshyari.com/article/4958429
https://daneshyari.com

