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a b s t r a c t

In this paper, we develop a new dispersion minimizing finite difference scheme for the
Helmholtz equation with perfectly matched layer (PML) in two dimensional domain,
which is a second order 9-point scheme. To discretize the second derivative operator,
we employ a linear combination of a point and its neighboring grid points to replace
each of the five points in the traditional central difference scheme. Based on minimizing
the numerical dispersion, the combination weights are determined by minimizing the
numerical dispersionwith a flexible selection strategy. The new scheme is simple, rotation-
free, and pointwise consistent with the equation, which is different from the classical
rotated 9-point difference scheme obtained by combining the Cartesian coordinate system
and the rotated system. Moreover, it is a robust scheme even if the step sizes of
different directions are not equal. Convergence analysis and dispersion analysis are given.
Several numerical examples are presented to illustrate the numerical convergence and
effectiveness of the new scheme.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Helmholtz equation is very important in many fields of science and engineering, for instance, in aeronautics, marine
technology, geophysics and optical problems. The Helmholtz equation is so important that its numerical simulation has
attracted significant research interest. To simulate the Helmholtz equation numerically, artificial boundary conditions are
often employed to truncate the infinite computing domain into a finite one. Two popular artificial boundary conditions
are the perfectly matched layer (PML, cf. [1–3]) and absorbing boundary condition (cf. [4,5]). In practice, the PML has
excellent absorbing performance. It generates almost no reflection at the interface between the interior medium and the
artificial absorbing medium. In this paper, we consider the problem of solving the Helmholtz equation with PML in the two
dimensional domain.

To solve the Helmholtz equation, we mainly have finite element methods (cf. [6–12]) and finite difference methods
(cf. [13–19]). It is known that all the numerical methods suffer from the ‘‘pollution effect’’ (cf. [8,20]), which can never be
eliminated for the two dimensional (2D) and three dimensional (3D) cases. Because of the pollution effect, the wavenumber
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of the numerical solution is different from the wavenumber of the exact solution, which is known as the ‘‘numerical
dispersion’’ (cf. [20,21]). Due to the numerical dispersion, the numerical method requires a finer mesh to ensure the
accuracy with the increasing wavenumber. To suppress the pollution effect and reduce the numerical dispersion, a number
of numerical methods (cf. [6,7,22,14–16,23,19,24]) are proposed during the past few decades.

Finite difference methods have been widely used in solving the Helmholtz equation, especially in the engineering field
such as oil–gas exploration. It is known that the standard 2D 5-point finite difference scheme leads to serious numerical
dispersion. To reduce the numerical dispersion, a rotated 9-point finite difference scheme (cf. [14]) was developed by
linearly combining the two discretizations of the equation on the classical Cartesian coordinate system and the 45° rotated
system. In [16], the rotated 9-point difference schemewas extended to a 25-point scheme, which gave a better performance.
However, the bandwidth of the resulting matrix is much wider than that of the 9-point scheme. In [25–27], Chen
et al. developed the derivative-weighting difference schemes, which are rotation-free and consistent with the Helmholtz
equation. However, the derivative-weighting difference scheme does not work when the step sizes of different directions
are not equal, which is usually the case in practical applications. In [23], a dispersion minimizing difference scheme was
constructed for the 3D Helmholtz equation based on the ray theory. In [19], an exact finite difference schemewas proposed,
which required to solve the equation repeatedly in order to obtain a good solution. To reduce the numerical error, higher-
order finite difference schemes (cf. [13,17,18,28]) were also commonly used. However, the higher-order schemes require
the source term (right-hand side) to be smooth enough, which cannot be satisfied in many cases.

In this paper, a newdispersionminimizing finite difference scheme is proposed for the 2DHelmholtz equation, which is a
second order scheme. To construct the scheme, we first employ the standard 5-point central difference scheme to discretize
the secondderivative operator and the zeroth termof theHelmholtz equation, and then replace each of the five grid points by
aweighted combination of the point and its three neighboring points. This scheme is different from the derivative-weighting
one, we call it the point-weighting scheme. The weights (parameters) are obtained by minimizing the numerical dispersion
via the dispersion relation formula, and a flexible selection strategy is suggested in the determination of the weights, which
makes full use of the priori information. The convergence analysis and dispersion analysis are given. Compared with the
rotated difference scheme, the new scheme is simpler, more effective, and is pointwise consistent with the Helmholtz
equation. In comparison with the derivative-weighting scheme, the new scheme has much better performance in reducing
the numerical dispersion in the case that the step sizes are not equal in different directions. Hence, the new scheme is a
robust one, and we demonstrate this both theoretically and numerically.

This paper is organized as follows. In Section 2, we propose a new dispersionminimizing finite difference scheme for the
2D Helmholtz equation with PML based on point weighting, and prove that the new scheme is second order in accuracy.
In Section 3, numerical dispersion analysis is given, and a selection strategy is introduced to determine the weights in the
new scheme. In Section 4, numerical experiments are given to validate numerical convergence and effectiveness of the new
scheme. Finally, in Section 5, some conclusions are drawn.

2. A new finite difference scheme based on point weighting

In this section we develop a new finite difference scheme for the 2D Helmholtz equation with PML based on point
weighting, and present the convergence analysis. Moreover, we point out that the new scheme is pointwise consistent
with the Helmholtz equation with PML.

We start with describing the Helmholtz equation with PML [1,3]. Consider the Helmholtz equation

A u := −∆u − k2u = g in R2, (2.1)

where ∆ :=
∂2
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is the Laplacian, k is the wavenumber defined as k := 2π f /v with f indicating the frequency and v

indicating the speed, u is the unknown representing a pressure field, and the right side g represents the source term. The
wavenumber k is a constant for the homogeneous medium, and varies for the heterogeneous medium.

Applying PML technique to truncate the infinite domain of Eq. (2.1) into a bounded domain leads to the equation

−
∂

∂x


ey
ex

∂u
∂x


−

∂

∂y


ex
ey

∂u
∂y


− exeyk2u = g, (2.2)

where ex := 1 − i σx
ω

and ey := 1 − i σy
ω
, in which ω := 2π f is the angular frequency, σx and σy are usually chosen as

differentiable functions only depending on the variables x and y respectively for the end of reducing the numerical reflection.
Generally, σx is defined as

σx :=

2πa0f0
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, inside PML,

0, outside PML,
(2.3)

where f0 is the dominant frequency of the source, LPML is the thickness of PML, lx is the distance from interface between the
interior region and PML region. Moreover, a0 is a constant, and we choose a0 = 1.79 according to [3]. σy can be chosen
similarly. In interior region, ex ≡ 1, ey ≡ 1. The wavelength is defined by λ := v/f , and the number of wavelengths in a
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