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a b s t r a c t

In this paper we study the Fréchet differentiability of the objective functional for a quite
general class of coefficient inverse problems. We present sufficient conditions for the
existence of arbitrary-order differentials as well as formulae for the calculation of first and
second order derivatives. The general case theorems are then applied to two real-world
geophysical inverse problems.
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1. Introduction

We consider the following class of inverse problems: find the value of a parameter γ ∗
∈ D such that

C(γ ∗) = min
γ∈D

C(γ ). (1)

Here

C : D ∋ γ −→ f (do, Q(uγ )) ∈ R+ (2)

is the objective functional (or simply the objective), D is a set of admissible values, i.e. a model space (cf. [1]),

Aγ : V −→ V ′ or V
′

is a γ -dependent direct problem operator between a Hilbert space V and its dual (or the complex conjugate to its dual when
V is complex), uγ ∈ V is the solution of the direct problem

Aγ (uγ ) = 0,

i.e., the direct solution corresponding to a parameter γ ∈ D ,

Q : V −→ O

is an observation operator mapping the direct solution to an observable quantity (called quantity of interest), O is a data
space (cf. [1]), do ∈ O denotes actual observation data and

f : O × O −→ R+
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is amisfit functional. In this paper we assume that the operator Aγ has the following form

Aγ (u)(v) = b(γ ; u, v) − L(v) (3)

for every γ ∈ D , u, v ∈ V , i.e., the direct problem in (1) is to find uγ ∈ V such that

b(γ ; uγ , v) = L(v) for every v ∈ V . (4)

Hence, we consider a class of coefficient inverse problems (cf. [2]) formulated as global optimization problems using the
quasi-solution method due to Ivanov (cf. [3]).

Since our problem is put into the optimization framework, it is natural to apply fast gradient-based optimizationmethods
(like Newton, Gauss–Newton, conjugate gradients, BFGS, etc., cf. [4]) to solve it. And, indeed, these methods have been a
common choice in the inverse problem community, see e.g. [5–9] and the references therein. Although the straightforward
application of gradient methods can be problematic because of the typical ill-posedness of problems (1), even when using
the regularization [10], the objective derivatives can be used in the construction of effective inversion strategies. In one of
such, called the Hierarchic Memetic Strategy (HMS) [11] they are already used or are planned to be used in the following
areas:

• hybridizing the gradient methods with a stochastic evolutionary global optimization solver to increase the accuracy and
reduce the computational cost of the latter;

• constructing a local approximation of the objective that shall be more accurate than the one utilizing only objective
values; such an approximation can be then used for rough detection of solution attraction basins and plateaus in the
objective landscape;

• constructing so-called utility function in a special type of selection operator based on the idea of multiwinner voting,
that has the capability of good plateau coverage [12].

A fully justified application of gradient methods requires the the first-order (sometimes second-order) Fréchet
differentiability of the objective. Furthermore, successful applications of the regularization method are based on conditions
involving Fréchet derivatives, such as Theorem 1.9.1.2 from the book [13]. Hence, the existence of Fréchet differentials (and
not only, e.g., Gâteaux ones) of the objective is crucial from the applicational point of view. Despite that, authors of many
papers pay little attention to formal proving the differentiability and providing formulae for the computation of derivatives.
Nevertheless, there are also quite a few papers that deal with those formal aspects, like [14–16,7,17–21]. Typically, such
papers concentrate on the objective gradient, however, Kwon and Yazici [22] show formulae for the computation of higher-
order derivatives aswell. Many papers deal with particular classes of inverse problems, like inverse scattering [16], electrical
impedance tomography [14] or vertical electrical sounding [17]. In contrast, Dierkes et al. [23] consider quite a general
case of coefficient inverse problems and obtain results applicable to a few various concrete problems. In this paper we
propose a different and in a sense yet more general approach that seems to be applicable to a quite broad class of coefficient
inverse problems. We prove the existence of arbitrary-order Fréchet derivatives under some natural assumptions and show
formulae to compute the Jacobian and the Hessian in a general case, and then we apply the method to two geophysical
coefficient inverse problems related to the conductivity (or resistivity) loggingmeasurements. Let us note that the presented
real-world problems were already solved numerically using HMS [24,25].

2. Some remarks on Banach algebra analysis

For the convenience of the reader let us start with recalling the definition of the Fréchet differential. Let U and W be
Banach spaces and let G be an open subset of U . We say that a mapping

F : G −→ W

is Fréchet differentiable at u ∈ G if there exists a linear and continuous mapping

DuF : U −→ W

such that for every h ∈ U such that u + h ∈ Gwe have
∥F(u + h) − F(u) − DuF(h)∥W

∥h∥U
→ 0 as h → 0.

The mapping DuF is called the differential of F in u. The value of DuF on a vector h, i.e. DuF(h), is the derivative of F in u in
direction h.

If F is differentiable at every u ∈ G, then the following mapping is defined

DF : G ∋ u −→ DuF ∈ L(U;W ),

where L(U;W ) denotes the space of linear and continuous mappings from U into W . Since the latter is itself a Banach
space, we can define higher differentials and derivatives in the same way as above. In particular, the second differential of
F at u ∈ G (if it exists) is the following linear and continuous mapping

D2
uF = DuF(DF) : U −→ L(U;W ).
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