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a b s t r a c t

A three-dimensional, spectrally accurate algorithm based on the immersed boundary
conditions (IBC) concept has been developed for the analysis of flows in channels bounded
by rough boundaries. The algorithm is based on the velocity–vorticity formulation and uses
a fixed computational domainwith the flowdomain immersed in its interior. The geometry
of the boundaries is expressed in terms of double Fourier expansions and boundary
conditions enter the algorithm in the form of constraints. The spatial discretization uses
Fourier expansions in the stream-wise and span-wise directions andChebyshev expansions
in thewall-normal direction. The algorithm can use either the fixed-flow-rate constraint or
the fixed-pressure-gradient constraint; a direct implementation of the former constraint
is described. An efficient solver which takes advantage of the structure of the coefficient
matrix has been developed. It is demonstrated that the applicability of the algorithm can
be extended to more extreme geometries using the over-determined formulation. Various
tests confirm the spectral accuracy of the algorithm.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The immersed boundary (IB) method provides a general conceptual basis for developing efficient computational tools
to solve flow problems involving complex boundary geometries. The concept can be traced to algorithms developed for the
analysis of moving boundary problems, especially fixed grid Eulerian methods [1–8]. The term ‘‘immersed boundary’’ has
been attributed to Peskin [9]whoused it in the context of cardiacmechanics problems. Themethodworks by discretizing the
governing equations within a regular computational domain that surrounds the complex flow domain. Special procedures
are then used to enforce the boundary conditions along the physical boundaries, immersed within the computational
domain. This is analogous to imposing interfacial boundary conditions on an interface moving through a fixed grid. The
computational efficiency of this class of methods stems from the elimination of the cost of generating boundary conforming
grids but leads to challenges in enforcing the flow boundary conditions.

The essence of the IB method is to impose forcing at the edge of the computational domain so that the flow
quantities evaluated along the edge of the physical domain assume values specified by the boundary conditions. Various
implementations have been developed over the past few decades [10,11] with the forcing applied in either a continuous
or discrete manner. Most of implementations apply either low-order finite-difference, or finite-volume or finite-element
techniques for the spatial discretization [12–14] resulting in limited spatial accuracy. Some of the recent implementations
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employ either the spectral discretization [15,16] or higher-order finite-differencing [17] for the field equations, however, it
remains to be shown that the complete solution delivers the same accuracy.

A fully spectrally-accurate version of the IBmethod, referred to as the Immersed Boundary Conditions (IBC) method, was
proposed in [18] for two-dimensional flow problems. We use a distinct name for this method, IBC method, as its theoretical
bases are completely different from the typical IB methods. The discretization relies on two types of Fourier expansions, one
for the field variables and one for the boundary conditions. The boundary relations responsible for the enforcement of the
boundary conditions involve an overlap of these two expansions which is constructed formally and provides the means to
enforce boundary conditions with spectral accuracy. The use of Chebyshev expansions in the non-periodic direction makes
the algorithm effectively gridless and, thus, allows quick adaptation to different geometries.

The spectral discretization of the field equations in the IBC method begins by representing the unknowns in terms
of Fourier expansions, leading to a system of modal equations coupled through nonlinear terms [19]. Typical solution
procedures remove this coupling by using nonlinear terms from the previous iteration. This permits to solve each modal
equation separately as is the casewhen simulating flows in smooth channels [20]. Themodal equations are discretized using
Chebyshev expansions [21]. The construction of boundary relations involves representing values of Chebyshev polynomials
at the boundaries in terms of another set of Fourier expansions (‘‘Boundary Fourier Expansions’’ or BFE) which yields more
constraints than required to form a closed system of algebraic equations [22]. The ‘‘classical’’ formulation gives priority
to constraints corresponding to the lowest Fourier modes from the BFE’s and retains enough of them to form a closed
algebraic system. These constraints provide coupling between the modal equations resulting in a need to solve a very
large algebraic system. The cost of the solution can be lowered by two orders of magnitude as far as memory requirements
and computational time are concerned using linear solvers which take advantage of the structure of the coefficient matrix
[23]. The number of required Fourier modes increases very rapidly with increasing boundary complexities as the rate of
convergence of the BFE’s decreases. This cost may be lowered by using the over-determined formulation where the number
of boundary relations is increased to counter-balance the smaller convergence rates of BFE’s while the number of modal
equations remains unchanged [22]. The resulting system has a rectangular coefficient matrix with a very peculiar structure
but can be solved very efficiently using an algorithm which takes advantage of this structure. The best solution strategy
involves solving the part of the system resulting from the field equations exactly and the part resulting from the boundary
relations in the least squares sense [24].

The above discussion shows that the existing spectrally-accurate algorithms for the Navier–Stokes equation based on
the concept of immersed boundaries deal only with two-dimensional problems. There is therefore a need to develop an
extension of the IBCmethod suitable for the analysis of three-dimensional flows. One needs to pay attention to the memory
management as the size of the problem increases rapidly when more Fourier modes are required to deal with the increased
three-dimensional geometric complexity.

This paper describes the three-dimensional version of the IBC method with applications focused on the analysis of
flows in domains bounded by rough walls. Section 2 introduces the model problem. Section 3 describes the numerical
formulation of the problem; Section 3.1 discusses the velocity–vorticity formulation and Section 3.2 presents the numerical
discretization. Here, Section 3.2.1 presents the discretization of the field equations, Section 3.2.2 discusses the discretization
of the boundary conditions and Section 3.2.3 presents the discretization of the flow constraints. Section 4 is focused on the
solution process; Section 4.1 describes the specialized linear solver used repeatedly during the iterative solution process
while Section 4.2 discusses efficiencies resulting from taking advantage of the complex conjugate property of the unknowns.
Section 5 discusses the evaluation of the pressure field. Section 6 discusses testing of the algorithm. Section 7 presents
the over-determined formulation of this algorithm and discusses the range of its applicability. Section 8 provides a short
summary of the main conclusions.

2. Problem formulation

2.1. Geometry of flow domain

Consider a channel formed by rough walls extending to ±∞ in the x- and z-directions. The upper and lower walls are
located at yU (x, z) and yL (x, z), respectively. It is assumed that the roughness is periodic in the x- and z-directions with
wavelengths λx = 2π/α and λz = 2π/β where α and β stand for the wave numbers in the x- and z-directions (Fig. 1),
respectively, resulting in the flowdomain defined asΩf = [0, λx]×[yL, yU ]×[0, λz]. The channel geometry can be described
using Fourier expansions of the form

yU (x, z) = 1 +

NA
n=−NA,U

MA
m=−MA

H(n,m)
U ei(nαx+mβz), yL (x, z) = −1 +

NA
n=−NA

MA
m=−MA

H(n,m)
L ei(nαx+mβz) (2.1)

where half of the mean channel opening L has been used as the length scale and NA and MA denote the number of Fourier
modes required for the description of the roughness geometry in the x- and z-directions. The expansion coefficients satisfy
the reality conditions of the form H(n,m)

U = H(−n,−m)∗

U and H(n,m)
L = H(−n,−m)∗

L where star denotes the complex conjugates.



Download English Version:

https://daneshyari.com/en/article/4958448

Download Persian Version:

https://daneshyari.com/article/4958448

Daneshyari.com

https://daneshyari.com/en/article/4958448
https://daneshyari.com/article/4958448
https://daneshyari.com

