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a b s t r a c t

In this paper, we discuss the finite iterative algorithm to solve a class of generalized
coupled Sylvester-conjugatematrix equations.We prove that if the system is consistent, an
exact generalized Hamiltonian solution can be obtained within finite iterative steps in the
absence of round-off errors for any initial matrices; if the system is inconsistent, the least
squares generalized Hamiltonian solution can be obtained within finite iterative steps in
the absence of round-off errors. Furthermore, we provide a method for choosing the initial
matrices to obtain the minimum norm least squares generalized Hamiltonian solution of
the system. Finally, numerical examples are presented to demonstrate the algorithm is
efficient.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix equations are often encountered in control theory, stability analysis, perturbation analysis and some other fields
of pure and applied mathematics. For example, in stability analysis of linear jump systems with Markovian transitions, the
following matrix equations are typical coupled Lyapunov matrix equations

AT
i + PiAi + Qi +

n∑
j=1

πijPj = 0, i = 1, 2, . . . , n, (1.1)

whereQi are positive definitematrices,πij are known transitionprobabilities and Pj are theunknownmatrices [1,2].Whenwe
calculate an additive decomposition of generalized transformationmatrix equations [3], the following generalized Sylvester
matrix equations{

AX − YB = E,

CX − YD = F (1.2)

are often encountered, where X and Y are the matrices to be solved. Due to these applications, coupled matrix equations
have been widely researched [4–15].

Sylvester-conjugate matrix equations is a kind of important matrix equations. Wu et al. [16] considered the following
Yakubovich-conjugate matrix equations

X − AXF = BY , (1.3)
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where X ∈ Cn×p and Y ∈ Cr×p are the matrices to be determined. Karimi and Dehghen [17] considered the generalized
coupled linear matrix equations of the form⎧⎪⎨⎪⎩

l∑
j=1

AijXjBij +

l∑
j=1

CijXH
j Dij = Ei, i = 1, 2, . . . , s,

Xj ∈ Cmj×nj , j = 1, 2, . . . , l,

(1.4)

where Aij, Cij ∈ Cpi×mj , Bij,Dij ∈ Cnj×qi and Ei ∈ Cpi×qi , i = 1, 2, . . . , s, j = 1, 2, . . . , l are given matrices and Xj ∈ Cmj×nj ,
j = 1, 2, . . . , l are unknown matrices to be determined. Note that if there exists some 1 ≤ j ≤ l such that both Xj and XH

j
are in one of Eqs. (1.4), thenmj = nj. They proved the minimum-norm solution can be obtained when the matrix equations
are consistent and the optimal approximation solution to a given group of matrices can be derived. Recently, Huang and
Ma [6] used the conjugate gradient method for obtaining the minimum norm solution of the following generalized coupled
Sylvester-conjugate matrix equations{

A1X + B1Y = D1XE1 + F1,
A2X + B2Y = D2XE2 + F2,

(1.5)

where A1, B1,D1, A2, B2,D2 ∈ Cp×m, E1, E2 ∈ Cn×n, F1, F2 ∈ Cp×n are given matrices and X, Y ∈ Cm×n are unknownmatrices
that need to be solved.

Although there are all kinds of iterative methods (see [3,18–32]) for solving the matrix equations, few researchers
considered the least squares solution of the matrix equations (see [33–37]) when the matrix equations are inconsistent.
Particularly, the least squares generalized Hamiltonian solutions of the matrix equations are still open. For this reason, we
consider the generalized coupled Sylvester-conjugate matrix equations of the form

l∑
j=1

AijXjBij +

l∑
j=1

CijX jDij = Ei, i = 1, 2, . . . , s, (1.6)

where Aij, Cij ∈ Cm×n, Bij,Dij ∈ Cn×r and Ei ∈ Cm×r , i = 1, 2, . . . , s, j = 1, 2, . . . , l, are given matrices and Xj ∈ Cn×n, j =

1, 2, . . . , l, are unknownmatrices to be determined. Similar to the previous works, we propose a finite iterative algorithm to
solve the system (1.6). We consider two cases. Moreover, we prove that if the system (1.6) is consistent, an exact generalized
Hamiltonian solution (X∗

1 , X∗

2 , . . . , X∗

l ) can be obtained within finite iterative steps in the absence of round-off errors for any
initial matrices. If the system (1.6) is inconsistent, the least squares generalized Hamiltonian solution of the system (1.6)
can be obtained within finite iterative steps in the absence of round-off errors; moreover, the minimum norm least squares
generalized Hamiltonian solution can be derived by finding the special type of the initial matrices.

For convenience, we use the following notations throughout this paper. Let Rm×n and Cm×n be the sets of all real and
complex m × n matrices, respectively. We abbreviate Cn×1 as Cn. For A ∈ Cm×n, we write A, AT , AH , ∥A∥F , tr(A), A−1

and R(A) to denote conjugation, transpose, conjugate transpose, Frobenius norm, the trace, the inverse and the column
spaces of matrix A, respectively. For any matrices A = (aij), B = (bij), matrix A

⨂
B denotes the Kronecker product

defined as A
⨂

B = (aijB). For the matrix X = (x1, x2, . . . , xn) ∈ Rn×n, vec(X) denotes the vec operator defined as
vec(X) = (xT1, x

T
2, . . . , x

T
n )

T
∈ Rmn. Let OASRn×n be the sets of all n × n real orthogonal antisymmetric matrices, i.e.,

OASRn×n
= {J|JT J = JJT = In, J = −JT , J ∈ Rn×n

}.

It is clear that J2 = −In, ∀J ∈ OASRn×n. Consequently, nmust be an even integer. LetHCn×n be the sets of all n×n generalized
Hamiltonian matrices (see [38]), i.e.,

HCn×n
= {A|JAJ = AH , A ∈ Cn×n

}, (1.7)

where J ∈ OASRn×n.
The rest of this paper is organized as follows. In Section 2, we construct a finite iterative algorithm for solving the system

(1.6) and prove that if the system is consistent, an exact generalized Hamiltonian solution (X∗

1 , X∗

2 , . . . , X∗

l ) can be obtained
within finite iterative steps in the absence of round-off errors for any initial matrices. Moreover, we derive that if the system
is inconsistent, the least squares generalizedHamiltonian solution can be obtainedwithin finite iterative steps in the absence
of round-off errors. In Section 3, we provide a method for choosing the initial matrices to obtain the minimum norm least
squares generalized Hamiltonian solution of the system (1.6). In Section 4, we present some numerical experiments. Finally,
we give our conclusions in Section 5.

2. Iterative algorithm for solving Eq. (1.6)

First, we give the definition of the inner product from [5,39]. In the space Cm×n over the field R, the inner product can be
defined as

⟨A, B⟩ = Re[tr(AHB)]. (2.1)
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