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a b s t r a c t

The numerical solution of reaction–diffusion systems modelling predator–prey dynamics
using implicit-symplectic (IMSP) schemes is relatively new. When applied to problems
with chaotic dynamics they perform well, both in terms of computational effort and
accuracy. However, until the current paper, a rigorous numerical analysis was lacking. We
analyse the semi-discrete in time approximations of a first-order IMSP scheme applied
to spatially extended predator–prey systems. We rigorously establish semi-discrete a
priori bounds that guarantee positive and stable solutions, and prove an optimal a priori
error estimate. This analysis is an improvement on previous theoretical results using
standard implicit–explicit (IMEX) schemes. The theoretical results are illustrated via
numerical experiments in one and two space dimensions using fully-discrete finite element
approximations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In spatial ecology the deterministic description of population densities that are continuous in space and time are mod-
elled by reaction–diffusion systems,which can be analysed bymeans of thewell-developed theories of differential equations
and dynamical systems [1]. We focus on spatially-extended predator–prey models described by reaction–diffusion systems
in the following general form

∂u
∂t

= f (u, v) + Du∆u, (1.1a)

∂v

∂t
= g(u, v) + Dv∆v, (1.1b)

where u(x, t) and v(x, t) represent population densities of prey and predators at time t and position x and Du and Dv are
positive constant diffusion coefficients. The equations evolve in ΩT := Ω × (0, T ) where the domain Ω is a bounded and
open subset of Rd, d ≤ 3. The boundary of the domain ∂Ω is assumed to belong to the class of C1. The system is augmented
with initial conditions

u0(x) := u(x, 0), v0(x) := v(x, 0), x ∈ Ω, (1.1c)
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and the homogeneous Neumann boundary conditions

∂u
∂ν

=
∂v

∂ν
= 0 on ∂Ω × (0, T ). (1.1d)

In the above equations ν denotes the outward unit normal to ∂Ω and ∆ denotes the Laplacian operator
d

i=1
∂2

∂xi2
.

Results from semigroup theory and an a priori estimatewere used inGarvie and Trenchea [2] to prove the global existence
and uniqueness of the classical solutions of the predator–prey system (1.1a)–(1.1d) on two specific systems. For the well-
posedness of the problem, we assume the nonlinearities f , g are globally Lipschitz, i.e., there exists L > 0 such that

|f (u1, v1) − f (u2, v2)| + |g(u1, v1) − g(u2, v2)| ≤ L(|u1 − u2| + |v1 − v2|), (1.2)

for all ui and vi in a compact subset of R+
× R+ and, in order to assure the non-negativity of solutions corresponding to

biologically meaningful densities, the reaction kinetics satisfy

f (0, v), g(u, 0) ≥ 0, ∀u, v ≥ 0. (1.3)

Consequently, if the initial data (u0(x), v0(x)) is chosen in [0, +∞)2 for all x ∈ Ω , then by a maximum principle the
solution (u(x, t), v(x, t)) also lies in [0, +∞)2, which is a positively invariant region for the system.

Moreover, we assume that f (u, v) has logistic dominated growth in the first variable, namely

f (u, v) ≤ u(1 − u), ∀u, v ≥ 0, (1.4)

and the function g satisfies a sub-linear growth in the second variable, i.e., there exists Cg > 0 such that

g(u, v) ≤ Cgv, ∀u, v ≥ 0. (1.5)

Notice that from the assumptions (1.3)–(1.5) it is easy to show that for all u, v ≥ 0

g(u, 0) = f (0, v) = 0. (1.6)

The assumptions (1.3)–(1.5) are not overly restrictive as the principal population dynamics models, based on logistic
prey growth and ‘Holling type’ functional response of the predators, satisfy these conditions [3–5]. This is the case of
models that couple logistic prey growth with Holling II and IV functional predator responses [6] as well as the well-known
Rosenzweig–MacArthur model [7].

The reaction–diffusion system (1.1a)–(1.1d) includes a class of predator–prey models exhibiting instabilities [8].
Reaction–diffusion systems with logistic prey growth and ‘Holling type’ functional response of the predators exhibit spiral
waves, targetwaves, and spatiotemporal chaos. However, diffusion induced instability is not possible for systemsof this type.
Numerical schemes used to approximate such dynamics should be sufficiently robust to reproduce the correct behaviour of
the continuous solutions. Stability, high-order consistency and preservation of geometric properties form three pillars on
which numerical methods for differential equations rest [9]. The need for a rigorous error analysis of the numerical schemes
to approximate the reaction–diffusion dynamicswas highlighted in the papers byM.Garvie, C. Trenchea and their co-authors
in [10,2,11]. In particular, two implicit–explicit schemes (IMEX) have been extensively analysed by the authors in Garvie and
Trenchea [10] using the standard Galerkin finite element method with piecewise linear continuous basis functions.

The preservation of properties of the exact flow under numerical discretization is a more recent field of research. For an
exhaustive study of geometric integrators, especially for ordinary differential systems, we refer to the monograph by Hairer
et al. [12]. Recently, attention has been devoted to the geometric integration of reaction–diffusion equations. For example,
splitting methods were introduced by Hansen et al. [9] to preserve positivity of the numerical approximations.

Implicit-symplectic (IMSP) schemes are numerical integrators based on an implicit scheme for the stiff diffusive
term and a geometric integrator for the reaction function. In Diele et al. [13,14] IMSP schemes were proposed as novel
numerical schemes for the simulation of population and metapopulation predator–prey dynamics. Symplectic partitioned
Runge–Kutta schemes based on composition of Symplectic Euler stepswere implemented for approximating Lotka–Volterra
(LV) reaction–diffusion dynamics. The authors were motivated by the classical results for the local Poisson nature of the LV
dynamics (see, for example, Hairer et al. [12]). Poisson integrators (for example, Symplectic Euler method and composition
of symplectic Euler steps) reproduce the correct qualitative behaviour of the theoretical solution and achieve an accurate
long-time numerical approximation [12,15]. A stability analysis of IMSP schemes in terms of the diffusion and the reaction
time-scales was recently developed in Settanni and Sgura [16]. Their numerical simulations reveal that IMSP schemes
provide the best choice for spatio-temporal dynamics of standing oscillations around an equilibrium of centre type (see
e.g. Guckenheimer and Holmes [17]).

In this paper we undertake the rigorous numerical analysis of the semi-discrete in time approximations of a first-order
IMSP scheme applied to the spatially extended predator–prey system (1.1a)–(1.1d). In Diele et al. [13,14] themethod of lines
was used. Here, we consider a more technical methodology based on the analysis of a semi-discrete in time formulation of
the scheme. We do not undertake the numerical analysis of the fully-discrete problems, however, the analysis of the semi-
discrete problems provides the basis on which such a task could be carried out. A novel aspect of the current work is the use
of the IMSP approach in conjunction with the standard Galerkin finite element method to solve reaction–diffusion systems.
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