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a b s t r a c t

In this paper, we find the critical exponent of global small data solutions for a damped plate
equation with power nonlinearity

utt − ∆utt + ∆2u + ut = |u|p, t ≥ 0, x ∈ R2,

and for a system of two weakly coupled damped plate equations. We show how assuming
small data in the energy space H2

×H1 and in L1 is sufficient to compensate the regularity-
loss type decay effect created by the rotational inertia term −∆utt .

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we prove that the critical exponent for the damped plate equation with power nonlinearity{
utt − ∆utt + ∆2u + ut = |u|p, t ≥ 0, x ∈ R2,

(u, ut )(0, x) = (u0, u1)(x),
(1)

is 3. By critical exponent, we mean that small data solutions exist globally in time, if p ∈ (3, ∞), whereas global solutions
to (1) cannot exist, under suitable sign assumption on the data, for p ∈ (1, 3]. In this sense, for any p > 3, problem (1) can
be considered as a small perturbation of the linear problem{

utt − ∆utt + ∆2u + ut = 0, t ≥ 0, x ∈ R2,

(u, ut )(0, x) = (u0, u1)(x).
(2)

Model (2) regulates the evolution of a transversal displacement of a thin plate occupying the domain R2, under the action
of a frictional dissipation ut and of rotational inertia effects −∆utt (see [7]). We address the reader to [1] and the reference
therein, for a detailed investigation of properties like existence and uniqueness of the solution to (2). In [1], the authors
derive several energy estimates and L2 estimates for the solution to (2), and they apply these results to study the semilinear
problem with nonlinearities like |ut |

p, with p > 2. They also study the problem in n space dimensions, see (50), for n ≤ 5,
whereas the general case n ≥ 1 has been investigated for nonlinearities like u2

t in [8].
The energy for (2) is

E(t) =
1
2

∥ut (t, ·)∥2
L2 +

1
2

∥∇ut (t, ·)∥2
L2 +

1
2

∥∆u(t, ·)∥2
L2 ,
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and it dissipates, due to

E ′(t) = −∥ut (t, ·)∥2
L2 ,

so that, a natural solution space for problem (1) is C([0, ∞),H2) ∩ C1([0, ∞),H1).
However, the presence of the rotational inertia term−∆utt makes harder to obtain estimates for the linear problem (2), if

comparedwith the corresponding problemwithout rotational inertia, or with the dampedwave equation. As a consequence,
it is more difficult to apply these linear estimates to study the semilinear problem for small data (the problem for the
semilinear damped wave equation has been solved in [10]; see [4] for more general dissipative evolution equations).

Indeed, the rotational inertia term creates a structure of regularity-loss type decay in the linear problem; in general, one
has

∥∂k
t ∂

α
x u(t, ·)∥L2 ≲ (1 + t)−min

{
|α|+1

4 +k, s
2

} (
∥u0∥L1 + ∥u1∥L1 + ∥u0∥H|α|+k+s + ∥u1∥H|α|+k+s−1

)
,

for any t ∈ [0, ∞), for any k ∈ N, α ∈ N2, s ≥ 0. In particular, there is a competition between a decay rate which increases
when the space dimension increases and when one takes more derivatives, and a decay rate which increases when more
data regularity is assumed. This property has been found and investigated in several models (see the references in [8]).

More precisely, on the one hand, the low-frequencies part of the solution to (2) has the same asymptotic profile of the
solution to the parabolic problem{

ϕt + ∆2ϕ = 0, t ≥ 0, x ∈ R2,

ϕ(0, x) = u0(x) + u1(x),
(3)

i.e., ϕ = e−t∆2
(u0 + u1). This effect is called diffusion phenomenon, and we address the reader to [3] for a more general

presentation of this phenomenon for dissipative evolution equations. On the other hand, the high-frequencies part of the
solution to (2) has a behavior ‘‘like’’

e−
t
2 (1−∆)−1

w(t, x) = F−1
(
e
−

t
2(1+|ξ |2) ŵ(t, ξ )

)
,

where w is the solution to the Cauchy problem for the wave equation:{
wtt − ∆w = 0, t ≥ 0, x ∈ R2,

(w, wt )(0, x) = (u0, u0 + u1)(x).
(4)

Here, and in the following, we denote by f̂ = F(f ), the Fourier transform of a function f , and by F−1 the inverse of the Fourier
transform.

In this paper we show with a quite simple strategy how this regularity-loss type decay can be compensated to study (1),
by choosing suitable energy estimates with appropriate data regularity. It is easy to show that the critical exponent for (1)
is expected to be 3. The nonexistence of global solutions to (1), for p ∈ (1, 3], under a suitable sign assumption on the initial
data, may be proved by using the test function method [5], as done for the damped wave equation [11].

In our main result, we show that the assumption of small data in the energy space H2
×H1 and in L1, is sufficient to prove

the global existence of the solution u to (1), for any p > 3, and to derive optimal estimates for ∥u(t, ·)∥Lr , for any r ∈ [2, ∞].
By optimal estimates we mean, here and in the following, that the decay rate as t → ∞ is the same as the decay rate for the
solution to (3). This implies that such a decay rate cannot be improved by assuming additional data regularity.

Theorem 1. Let p > 3. Then there exists ε > 0 such that for any data

(u0, u1) ∈ A := (L1 ∩ H2) × (L1 ∩ H1), with
∥(u0, u1)∥A := ∥u0∥L1 + ∥u0∥H2 + ∥u1∥L1 + ∥u1∥H1 ≤ ε,

(5)

there exists a unique solution

u ∈ C([0, ∞),H2) ∩ C1([0, ∞),H1), (6)

to (1). Moreover, it satisfies the following estimates

∥u(t, ·)∥Lr ≲ (1 + t)−
1
2

(
1− 1

r

)
∥(u0, u1)∥A, ∀r ∈ [2, ∞], (7)

∥(∇u, ut )(t, ·)∥L2 ≲ (1 + t)−
1
2 ∥(u0, u1)∥A, (8)

∥(∆u, ∇ut )(t, ·)∥L2 ≲ ∥(u0, u1)∥A. (9)

Estimate (7) is optimal, since the decay rate (1+ t)−
1
2

(
1− 1

r

)
is the same as the decay for the Lr norm of the solution to (3).

Also estimate (8) is optimal for ∥∇u(t, ·)∥L2 , but not for ∥ut (t, ·)∥L2 .
In our second result, we consider a system of two weakly coupled damped plate equations⎧⎨⎩utt − ∆utt + ∆2u + ut = |v|

p, t ≥ 0, x ∈ R2,

vtt − ∆vtt + ∆2v + vt = |u|q, t ≥ 0, x ∈ R2,

(u, ut , v, vt )(0, x) = (u0, u1, v0, v1)(x).
(10)
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