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a b s t r a c t

In this paper, the characteristic block-centered finite difference method is introduced
and analyzed to solve the incompressible wormhole propagation. Error estimates for
the pressure, velocity, porosity, concentration and its flux in different discrete norms
are established rigorously and carefully on non-uniform grids. Finally, some numerical
experiments are presented to show that the convergence rates are in agreement with the
theoretical analysis.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wormhole formation during reactive dissolution of carbonates is a subject that has been widely studied in the recent
years. And it plays a very important role in the product enhancement of oil and gas reservoir. It is matrix acidization that
plays a significant role in enhancing oil production rate whenmuds and fines deposit at the perforated well pore pipe [1–6].
The primary objective of this process is to increase the production rate by increasing permeability of the damaged zone near
the well bore. The injected acid dissolves the material near the well bore and creates flow channels that establish a good
connectivity between the reservoir and thewell. Such channels with high porosities are called wormholes. The combination
of the finite element method and the finite difference method has been studied to simulate the wormhole generation and
propagation [7]. And in [1], mixed finite element-based fully conservative methods to simulate the wormhole propagation
has been developed by Kou and his coauthors.

Block-centered finite differences, sometimes called cell-centered finite differences, can be thought as the lowest order
Raviart–Thomasmixed elementmethod [8], with proper quadrature formulation. In [9],Wheeler presented themixed finite
elements for elliptic problems with tensor coefficients as cell-centered finite differences. And in 2012, a block-centered
finite difference method for the Darcy–Forchheimer model was considered [10]. In [11–14] block-centered finite difference
methods were developed. Recently, a parallel CGS block-centered finite difference method for a nonlinear time-fractional
parabolic equation has been studied [15]. Besides, Li and Sun [16] studied a new block-centered finite element method,
sometimes called marker-and-cell (MAC) method for Stokes problem, which achieved superconvergence phenomenon. We
consider block-centered finite differences in this paper since these schemes are of practical use in implementation and can
achieve superconvergence.
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As far as we know, there is no characteristic block-centered finite difference method for incompressible wormhole
propagation. Clearly, the motivation for including the method of characteristics is to follow the transport more accurately
than the standard finite difference method does. Before analyzing the convergence of our characteristic block-centered
finite difference method, we develop estimates of the expanded mixed finite element method with quadrature applied
to linear parabolic equations. Using these estimates, we obtain the superconvergence of the pressure, velocity, porosity,
concentration and its flux in different discrete norms. The error estimates are deduced rigorously and carefully in this paper,
and we carry out some numerical experiments to show that the convergence rates are in agreement with the theoretical
analysis.

The paper is organized as follows. In Section 2 we give the problem and some preliminaries. In Section 3 we present the
characteristic block-centered finite difference algorithm. In Section 4we demonstrate error analysis for the discrete scheme.
In Section 5 some numerical experiments using the characteristic block-centered finite difference scheme are carried out,
which show that the convergence rates are in agreement with the theoretical analysis.

Through out the paper we use C , with or without subscript, to denote a positive constant, which could have different
values at different appearances.

2. The problem and some preliminaries

In this paper, we consider the usual differential system used to describe incompressible wormhole propagation given
by [1,2]

∂φ

∂t
+ ∇ · u = f , x ∈ Ω, t ∈ J, (a)

u = −
K(φ)
µ

∇p, x ∈ Ω, t ∈ J, (b)

∂(φcf )
∂t

+ ∇ · (ucf )− ∇ · (φD ∇cf ) = kcav(cs − cf )+ fPcf + fIcI , x ∈ Ω, t ∈ J, (c)
∂φ

∂t
=
αkcav(cf − cs)

ρs
, x ∈ Ω, t ∈ J, (d)

(1)

whereΩ is a rectangular domain in R2. J = (0, T̂ ], and T̂ denotes the final time. p is the pressure, µ is the fluid viscosity, u
is the Darcy velocity of the fluid, f = fI + fP , fP and fI are production and injection rates respectively. The first term in the
continuity equation (1)(a) accounts for the effect of local volume change during dissolution on the flow field. cf is the cup-
mixing concentration of the acid in the fluid phase. cI is the injected concentration. For simplicity we assume that diffusion
coefficient D(x) = dmolI = diag(Dll), l = 1, 2 is diagonal matrix in the following. kc is the local mass-transfer coefficient, av
is the interfacial area available for reaction per unit volume of the medium. Eq. (1)(d) describes the evolution of porosity in
the domain due to reaction. The variable cs is the concentration of the acid at the fluid–solid interface, and the relationship
between cf and cs can be described as follows:

cs =
cf

1 + ks/kc
, (2)

where ks is the surface reaction rate constant. The three terms on the left hand side of Eq. (1)(c) represent the accumulation,
convection and dispersion of the acid respectively. The first term on the right hand side of Eq. (1)(c) represents the
transfer of acid species from the fluid phase to the fluid–solid interface [2]. φ and K are the porosity and permeability
of the rock respectively, the relationship between the permeability and the porosity is established by the Carman–Kozeny
correlation [17]

K
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φ
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2

, (3)

where φ0 and K0 are the initial porosity and permeability of the rock respectively. In Eq. (1)(d), α is the dissolving power of
the acid and ρs is the density of the solid phase. Using porosity and permeability, av is shown as

av
a0

=
φ

φ0


K0φ

Kφ0
, (4)

where a0 is the initial interfacial area.
The boundary and initial conditions are as follows.u · n = 0, φD∇cf · n = 0, x ∈ ∂Ω, t ∈ J,

cf (x, 0) = c0(x), x ∈ Ω,
φ(x, 0) = φ0(x), x ∈ Ω,

(5)
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