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a b s t r a c t

In this paper, we prove the existence of random attractors for the continuous random
dynamical systems generated by stochastic weakly dissipative plate equations with linear
memory and additive white noise by defining the energy functionals and using the
compactness translation theorem.
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1. Introduction

In this paper, we are devoted to consider the existence of random attractors for the following plate equations with linear
memory and additive white noise:

utt +∆2u +


∞

0
µ(s)∆2(u(t)− u(t − s))ds + g(u) = f (x)+

m
j=1

hjẆj, x ∈ U, t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ U, t ≤ 0,

u|∂U =
∂u
∂n


∂U

= 0, t ≥ 0,

(1.1)

where u = u(x, t) is a real valued function on U × [0,+∞), f (x) ∈ H2
0 (U) is a given external force. hj(x) ∈ H2

0 (U) ∩

H4(U) (j = 1, 2, 3, . . . ,m), {Wj}
m
j=1 are independent two-sided real-valued Wiener processes on a probability space

(Ω,F , P), where

Ω = {ω = (ω1, ω2, . . . , ωm) ∈ C(R,Rm) : ω(0) = 0}

is endowed with compact open topology, P is the corresponding Wiener measure, and F is the P-completion of Borel
σ -algebra onΩ . We identify ω(t)with (W1(t),W2(t), . . . ,Wm(t)), i.e.,

ω(t) = (W1(t),W2(t), . . . ,Wm(t)) , t ∈ R.

Then, define the time shift by

θtω(·) = ω(· + t)− ω(t), t ∈ R, ω ∈ Ω.
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The memory function µ(s) and the nonlinear term g ∈ C2(R,R) satisfy the following conditions:
(h1): µ(s) ∈ C1(R+) ∩ L1(R+), µ′(s) ≤ 0 ≤ µ(s), ∀s ∈ R+

;

(h2):


∞

0 µ(s)ds = µ0;

(h3): µ′(s)+ δµ(s) ≤ 0, ∀s ∈ R+ and some δ > 0;
(h4): There exists s0 > 0, such that µ′(s) ∈ L2((0, s0)), µ′(s)+ Mµ(s) ≥ 0, ∀s ≥ s0 and someM > 0;
(g1): lim inf|s|→∞

G(s)
s2

≥ 0;
(g2): lim inf|s|→∞

(s,g(s))−C0G(s)
s2

≥ 0, ∀s ∈ R+
;

(g3): |g ′(s)| ≤ l, g(0) = 0, ∀s ∈ R,
where G(s) =

 s
0 g(τ )dτ , and the following inequalities are direct consequences of (g1)–(g2),

G(u)+
1
4
∥u∥2

2 ≥ −C1, ∀u ∈ H2
0 (U), (1.2)

U
ug(u)dx − C0G(u)+

1
4
∥u∥2

2 ≥ −C2, ∀u ∈ H2
0 (U), (1.3)

for some C1, C2 > 0. Following Dafermos [1], we introduce a Hilbert ‘‘history’’ space Rµ,2 = L2µ(R
+,H2

0 (U)),with the inner
product

(ηL, ηN)µ,2 =


∞

0
(∆ηL(s),∆ηN(s)) ds, ∀ηL, ηN ∈ Rµ,2,

and new variables

η(x, t, s) = u(t, x)− u(t − s, x).

Set E = H2
0 (U)× L2(U)× Rµ,2, Z = (u, ut , η)

T , then the system (1.1) is equivalent to the following initial value problem
in the Hilbert space E:

Zt = L(Z)+ N(Z, t,W (t)), x ∈ U, t ≥ 0,
Z0 = (u0(x), u1(x), η0(x, s)), (x, s) ∈ U × R+,

(1.4)

whereu(t, x) = η(t, x, s) = η(t, x, 0) = 0, x ∈ ∂U, t ≥ 0, s ∈ R+,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ U,
η(0, x, s) = η0(x, s) = u0(0, x)− u0(−s, x), (x, s) ∈ U × R+,

(1.5)

L(Z) =

 ut

−∆2u −


∞

0
µ(s)∆2η(s)ds

ut − ηs

 , (1.6)

N(Z, t,W (t)) =


0

−g(u)+ f (x)+

m
j=1

hjẆj

0

 , (1.7)

D(L) =

Z ∈ E
 u +


∞

0
µ(s)η(s)ds ∈ H4(U) ∩ H2

0 (U),

ut ∈ H2
0 (U), η(s) ∈ H1

µ(R
+,H2

0 (U)), η(0) = 0

 , (1.8)

here H1
µ(R

+,H2
0 (U)) = {η : η(s), ∂sη(s) ∈ L2µ(R

+,H2
0 (U))}.

Problem (1.1) models transversal vibrations of thin extensible elastic plate in a history space, which is established based
on the framework of elastic vibration by Woinowsky-Krieger [2] and Berger[3]. It can also be regarded as an elastoplastic
flow equation with some kind of memory effect[1].

If we consider the linear damping in (1.1), the following stochastic plate equation is achieved

utt + αut +∆2u +


∞

0
µ(s)∆2(u(t)− u(t − s))ds + g(u) = f (x)+

m
j=1

hjẆj. (1.9)

When hj = 0 (1 ≤ j ≤ m) and µ = 0, Eq. (1.9) reduces to a normal determined autonomous damped plate equation.
There were a lot of publications concerning the existence of their random attractors, uniform attractors, pullback attractors
and exponential attractors, see for instance [4–9]. When hj ≠ 0 (1 ≤ j ≤ m) and µ = 0, Eq. (1.9) transforms into a
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