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a b s t r a c t

The linear superposition principle can apply to the construction of resonant multiple wave
solutions for a (3 + 1)-dimensional nonlinear evolution equation. Two types of resonant
solutions are obtainedby theparameterization forwavenumbers and frequencies for linear
combinations of exponential travelingwaves. The resonance phenomena ofmultiplewaves
are discussed through the figures for several sample solutions.
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1. Introduction

It is known that the Hirota bilinear method is an efficient tool to construct exact solutions of nonlinear evolution
equations [1–3], especially the soliton solutions [4–7]. By virtue of the dependent variable transformations, nonlinear
equations are transformed into bilinear equations with binary differential operators, and then the perturbation expansion
can be used to solve those bilinear equations. The resulting bilinear equations are still nonlinear equations and generally
do not obey the principle of linear superposition. However, it has been shown that the linear superposition principle can
apply to exponential traveling waves of Hirota bilinear equations, and can form a specific sub-class of solutions from linear
combinations of exponential wave solutions [8–11].

Let us consider a Hirota bilinear equation

F(Dx1 ,Dx2 , . . . ,DxM )(f · f ) = 0, (1)

where F is a multivariate polynomial inM variables satisfying

F(0, 0, . . . , 0) = 0, (2)

and the Hirota bilinear operators Dxj (1 ≤ j ≤ M) are defined by
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for nonnegative integersm and n. We remark that the Hirota bilinear operators have been generalized in Ref. [12].
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Now Let us fix N ∈ N and introduce N wave variables

θi = k1,i x1 + k2,i x2 + · · · + kM,i xM , 1 ≤ i ≤ N, (4)

where kj,i’s are all constants, and set a linear combination of N exponential traveling waves

f =

N
i=1

εieθi =

N
i=1

εiek1,ix1+k2,ix2+···+kM,ixM , (5)

with all εi’s as arbitrary constants. Note that we have the following bilinear identity

F(Dx1 , . . . ,DxM )eθi · eθj = F(k1,i − k1,j, . . . , kM,i − kM,j)eθi+θj , 1 ≤ i, j ≤ N. (6)

From Eq. (6), it is obvious to find that a linear combination function f defined by Eq. (5) solves the bilinear equation (1) if
only if the constants kj,i’s satisfy

F(k1,i − k1,j, k2,i − k2,j, . . . , kM,i − kM,j) = 0, 1 ≤ i < j ≤ N. (7)

Based on the condition (7), we point out that the linear superposition principle can apply to the bilinear equation (1), and
allow us to construct specific subspaces of solutions from linear combinations of exponential traveling waves.

In this paper, with the above presented linear superposition principle, we will consider a (3+ 1)-dimensional nonlinear
evolution equation

3uxz − (2ut + uxxx − 2uux)y + 2(ux∂
−1
x uy)x = 0, (8)

where ∂−1
x stands for an inverse operator ∂x = ∂/∂x. This (3 + 1)-dimensional nonlinear equation (8) was originally

introduced as a model for the study of algebraic-geometrical solutions [13]. Obviously, Eq. (8) possesses the Korteweg–de
Vries (KdV) equation as amain term. Therefore, Eq. (8) can be regarded as an extension of the KdV equation, andmay be used
to study shallow-water waves in nonlinear dispersive models [14]. Although the application of Eq. (8) in physics or other
science is not well clear, Eq. (8) admits more abundant soliton structures due to the higher space dimension. Its integrability
and large classes of exact solutions have been studied with various methods [13–18], e.g., the soliton, positon, negaton and
rational solutions.

In fact, the integral term in Eq. (8) can be removed by introducing the potential

u(x, y, z, t) = w(x, y, z, t)x, (9)

and then Eq. (8) is transformed to

3wxxz − (2wxt + wxxxx − 2wxwxx)y + 2(wxxwy)x = 0. (10)

Through the dependent variable transformation u = −3(ln f )xx or w = −3(ln f )x, the (3 + 1)-dimensional nonlinear
equation (8) has the following bilinear form

3DxDz − 2DyDt − D3
xDy


f · f = 0. (11)

In the following sections, we will apply the linear superposition principle to this Hirota bilinear equation (11) and
construct specific subspaces of solutions from linear combinations of exponential traveling waves, i.e., resonant multiple
wave solutions of Eq. (8).

2. Linear combinations of exponential traveling wave solutions

According to Eq. (4), let us take

θi = kix + liy + miz + ωit, 1 ≤ i ≤ N, (12)

where all ki’s, li’s, mi’s and ωi’s are constants to be determined. Substituting Eq. (12) into the linear superposition principle
condition (7) corresponding to Eq. (11) shows

F(ki − kj, li − lj,mi − mj, ωi − ωj)

= 3(ki − kj)(mi − mj) − 2(li − lj)(ωi − ωj) − (ki − kj)3(li − lj)

= k3i lj + 3k2i likj − 3k2i kjlj − 3kilik2j + 3kik2j lj + lik3j − 3kimj − 3mikj

+ 2ωilj + 2liωj − k3i li + 3kimi − 2liωi − k3j lj + 3kjmj − 2ljωj = 0. (13)

In order to solve Eq. (13), as in Refs. [8,19], we adopt a kind of the parameterization for wave numbers and frequencies

lj = a kα
j mj = b kβ

j , ωj = c kγ

j , 1 ≤ j ≤ N, (14)
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