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a b s t r a c t

In this paper, we will study normwise, mixed and componentwise condition numbers for
the linear mapping of the solution for general least squares with quadric inequality con-
straint (GLSQI) and its standard form (LSQI). Wewill introduce themappings from the data
space to the interested data space, and the Fréchet derivative of the introduced mapping
can deduced throughmatrix differential techniques. Based on condition number theory,we
derive the explicit expressions of normwise,mixed and componentwise conditionnumbers
for the linear function of the solution for GLSQI and LSQI. Also, easier computable upper
bounds for mixed and componentwise condition numbers are given. Numerical example
shows that the mixed and componentwise condition numbers can tell us the true condi-
tioning of the problem when its data is sparse or badly scaled. Compared with normwise
condition numbers, the mixed and componentwise condition number can give sharp per-
turbation bounds.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Least squares problems with quadratic constraints arise in a variety of applications, such as smoothing of noisy data, the
solution of discretized ill-posed problems from inverse problem, and in trust region methods for nonlinear least squares
problems; see the monograph [1] and references therein.

The general least squares with quadric inequality constraint (GLSQI) [1] is formulated by

min
x∈Rn

∥Ax − b∥2 subject to ∥Cx − d∥2 ≤ γ , (1.1)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp and γ > 0. The existence and uniqueness of the solution to GLSQI had been
investigated by Gander [2]. Let xA,C be the solution of the problem

min
x∈S

∥Cx − d∥2, S =

x ∈ Rn

|∥Ax − b∥2 = min


and assume that

∥CxA,C − d∥2 > γ , rank

A
C


= n, (1.2)

then there is a unique solution to (1.1). Under the assumption (1.2) the unique solution x to (1.1) satisfies the generalized
normal equations

(A⊤A + λC⊤C)x = A⊤b + λC⊤d, (1.3)
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where the parameter λ is determined by the secular equation

∥Cx − d∥2 = γ .

In the following we will denote Q (A, C) = (A⊤A + λC⊤C)−1. Then

x = Q (A, C)

A⊤b + λC⊤d


.

A particularly simple but important case of (1.1) is when

C = In and d = 0, (1.4)

where In is the n × n identity matrix. The corresponding standard form of GLSQI (LSQI) is given by

min
x∈Rn

∥Ax − b∥2 subject to ∥x∥2 ≤ γ , (1.5)

where γ > 0, A ∈ Rm×n and b ∈ Rm. If ∥AĎb∥ ≤ γ , where AĎ is Moore–Penrose inverse [3,1,4] of A, then AĎb is the unique
solution of (1.5), i.e., LSQI reduces to the unconstrained linear least squares problem. Therefore, throughout this paper we
assume that ∥AĎb∥ ≥ γ , where γ is a positive number in (1.5). Under the above condition, the unique solution of (1.5)
satisfies the following equation

(A⊤A + λIn)x = A⊤b,

whereλ is a positive parameter such that the constraint ∥x∥2 = γ holds. In the followingwedenote P(A, λ) = (A⊤A+λIn)−1.
Thus x = P(A, λ)A⊤b.

In numerical analysis, condition number is an important research topic, which measures the worst-case sensitivity of
an input data to small perturbations. A problem with large condition number is called ill-posed problem [5]. Also Demmel
pointed that the distance of a problem to ill-posed sets is the reciprocal of its condition number. For the comprehensive
review on condition numbers, we refer to the recent book [6].

Let V and W be two Banach spaces and U an open subset of V . Considering an operator f : U → W , if, for an x ∈ U ,
there exists a bounded linear operator Ax : V → W such that

lim
h→0

∥f (x + h)− f (x)− Ax(h)∥W

∥h∥V
= 0,

then f is said to be Fréchet differentiable at x and Ax is called the Fréchet derivative of f at x.
To the best of our knowledge a general theory of condition numbers was first given by Rice in [7]. Let φ : Rs

→ Rt be
a mapping, where Rs and Rt are the usual s- and t-dimensional Euclidean spaces equipped with some norms, respectively.
If φ is continuous and Fréchet differentiable in the neighborhood of a0 ∈ Rs then, according to [7], the relative normwise
condition number of a0 is given by

condφ(a0) := lim
ε→0

sup
∥∆a∥≤ε


∥φ(a0 +∆a)− φ(a0)∥

∥φ(a0)∥
/
∥∆a∥
∥a0∥


=

∥dφ(a0)∥∥a0∥
∥φ(a0)∥

, (1.6)

where dφ(a0) is the Fréchet derivative of φ at a0. Condition number can tell us the loss of the precision in finite precision
computation of a problem. With the backward error of a problem, we have the following rule of thumb [8]

forward error . condition number × backward error,

which can bound the relative error of the computed solution.
When the data is sparse or badly scaled, normwise condition numbers defined by (1.6) may overestimate the true error

since measuring perturbations by norms allows large perturbations on small entries of the data, further more zeros entries
may be perturbed to non zeros. From 1980s, componentwise perturbation analysis has been proposed, see papers[9–12]
and an early survey [13] and references therein. In fact, most error bounds in LAPACK [14] are based on componentwise
perturbation analysis. There are two kinds of condition numbers in componentwise analysis: the mixed condition numbers
and componentwise condition numbers [10]. The mixed condition numbers use the componentwise error analysis for the
input data, while the normwise error analysis for the output data. On the other hand, the componentwise condition numbers
use the componentwise error analysis for both input and output data. Mixed and componentwise condition numbers had
been introduced and studied for linear least squares problem (LS) [9], structured LS problem [15], LS problem involving
Kronecker products [16], Tikhonov regularization [17] and structured Tikhonov regularization problem [18].

Malyshev in [19] took a unified theory to study the normwise condition numbers for Tikhonov regularization, GLSQI,
LSQI and linear least squares with equality constraints when only perturbations on the coefficient matrices are considered.
The normwise condition numbers under the circumstance that there are perturbations both on the matrices and right hand
vectors are not investigated up to now.

In this paper, wewill study the conditioning of the following linearmappingsΦ andψ . We introduce the notation vec(A)
firstly. For any matrix A = [a1 a2 · · · an] ∈ Rm×n, we define vec(A) ∈ Rmn by vec(A) = [a⊤

1 a⊤

2 · · · a⊤
n ]

⊤, by stacking the
columns of A. So for GLSQI, we introduce the mapping as follows

Φ : Rmn
× Rpn

× Rm
× Rp

→ Rn
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