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a b s t r a c t

Based upon the extended framework of Hamilton’s principle, a variational formulation for
fully coupled thermoelasticity is presented. The resulting formulation can properly account
for all the governing differential equations as well as initial/boundary conditions. Thus, it
provides the basis for a class of unified space–time finite element methods. By employing
bar elements in one-dimensional space along with linear shape functions temporally,
the simplest space–time finite element method is presented herein with representative
examples for its validity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In current practice, most time-dependent phenomena are numerically addressedwith discrimination on space and time:
standard finite element methods are used in space to reduce a set of differential equations in time, then, time-integration
methods are employed for numerical solutions. Such space–time disparity may originate from the absence of a variational
framework that can properly account for initial conditions.

For discrete particle dynamics, Hamilton [1,2] presented variational formulation with the concept of stationary action,
where the functional action is defined as the integration over time of the Lagrangian function of the system. This Hamilton’s
principle is, of course, one of pillars of classical dynamics and has broad applicability in mathematical physics and
engineering [3–7]. However, there are two main difficulties. First, it cannot incorporate initial conditions properly. More
specifically, it requires that the variations at the beginning and end of the time interval vanish, which exploits time-
boundary conditions rather than initial conditions. These temporal boundary conditions in Hamilton’s principle represent
that functions are known at the beginning and the end of the time interval. However, one cannot assume that the position of
each particle at the end of the time interval is known, and in general, this is the primary objective in initial value problems.
This critical and philosophical weakness in Hamilton’s principle is called end-points constraint issue, and a thorough
historical review about this weakness can be found in the chapter 5 of [8]. The second one is the restriction to conservative
systems. With Rayleigh’s dissipation [9], Hamilton’s principle can account for dissipative irreversible dynamical systems.
While this approach can lead to proper governing differential equations in weak formalism, it is not entirely satisfactory
as a variational statement. In particular, the variation of Rayleigh’s dissipation function enters in ad hoc manner. Also, the
end-points constraint issue remains, as in the original Hamilton’s principle for the conservative system.
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Recently, in order to resolve critical weakness of end-points constraint in the Hamilton’s principle, the extended
framework of Hamilton’s principle (EHP) was developed for elastic/viscoplastic continuum dynamics [10], single-degree-
of-freedom/multi-degrees-of-freedom linear elastic systems [11–13], and pure heat diffusion [14]. This new variational
framework utilizes a mixed Lagrangian formulation (MLF, [15–22]), and the external specification of initial conditions
added in the variation of action. It cannot reside in a complete variational principle, because Rayleigh’s dissipation is still
required for irreversible dissipative systems, and it cannot strictly follow a variational statement. However, the framework
is quite simple and it initiates the implementation of unified space–time finite element approach with proper use of the
initial conditions. Based upon the previous success in elastodynamics [10] and pure heat diffusion [14] with this variational
approach, as a prototype extension, fully coupled dynamic irreversible thermoelasticity of continua is addressed in the
present paper, where the Maxwell–Chester version of the extended Fourier’s law [23,24] are taken into account for second
sound effects among others [25–28]. The paper firstly presents a variational formulation of thermoelasticity, where all the
governing differential equations are recovered from the corresponding Euler–Lagrange equations along with proper use
of initial and boundary conditions. Then, armed with this theoretical basis, the simplest form of unified space–time finite
element method is developed to demonstrate key ideas of consistent discretization scheme over both spatial and temporal
domains. Finally, several examples in semi-infinite domain are provided to validate this unified space–time finite element
approach with comparison to the known analytical solutions [29,30].

2. Variational formulation for thermoelasticity

In this section, a new variational formulation of thermoelasticity stemming from the extended framework of Hamilton’s
principle (EHP) is presented. It beginswith defining appropriate primarymixed variables and the corresponding Lagrangian,
potential function, and Rayleigh’s dissipation. In particular, mixed variables are defined in impulsive forms as

θ(t) =

 t

0
T (s) ds; θ̇ = T (1)

Hi(t) =

 t

0
qi(s) ds; Ḣi = qi (2)

Jij(t) =

 t

0
σij(s) ds; J̇ij = σij (3)

where θ is the impulse of temperature T , whileHi and Jij represent the impulse of heat flux qi and the impulse of elastic stress
σij, respectively. Thus, in this formulation, the purely elastic stress σij is written as σij = Cijkl εkl in terms of the constitutive
tensor Cijkl and the total strain εkl.

Over the domainΩ of a medium enclosed by the surface Γ , fully coupled thermoelasticity problems can be captured by
following three functions in the EHP
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where l, V , and ϕ represent Lagrangian density, potential function, and Rayleigh’s dissipation, respectively.
In Eqs. (1)–(6), the comma notation represents a partial derivative with respect to one of the spatial coordinates, while

superposed dot represents a time derivative. Also, T0 denotes the initial absolute temperature at the free-stress state, while
T then becomes the temperature change from that state. For other notations, εij represents a total strain, Aijkl is the inverse of
the usual constitutive tensorCijkl and dij is the inverse of the conductivity kij, whileβij is a thermalmoduli tensor. Additionally,
ρ is themass density, c is the specific heat coefficient at constant strain, τ0 is a relaxation time for theMaxwell–Chester heat
conduction law, f̄i is a specified body force density, and τ̄i is a traction specified on the portion of the surfaceΓτ . Furthermore,
q̄ is a specified normal heat flux on the portion of surface Γq, and ψ̄ is a specified body heat source rate per unit volume.

With these functions specified in Eqs. (4)–(6), in the EHP, the first variation of the action integral is newly defined as
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