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a b s t r a c t

In this paper, we introduce amixed finite elementmethod to overcome corner singularities
of the stationary Stokes system on a non-convex polygon. The reference Choi and Kweon
(2013) says that the velocity field and the pressure function are composed of singular
parts and regular remainders near a non-convex vertex, and furthermore the regular
parts are sufficiently smooth on the polygon. We use the corner singularity expansion
and propose new extraction formulae for coefficients of singularities. For the proposed
numerical method, we first try to find finite element solutions for the regular parts and
then calculate approximations of the coefficients by the derived formulae expressed by
the remainders and given functions. We show error estimates of the approximations for
the regular parts and coefficients, and give some numerical experiments to confirm the
efficiency and reliability of the proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in a novel finite element method overcoming corner singularities of the stationary Stokes problem
(cf. [1]). Solutions of boundary value problems on a (non-convex) polygon Ω ⊂ R2 have singular behavior near corners,
and such corner singularities affect the accuracy of the finite element method throughout the whole domain. Regarding
the stationary Stokes problem, it is seen that singular solutions for the velocity field and pressure are composed of singular
part and regular part near the corners, and the singular part is expressed by the linear combination of given leading corner
singularities for the Stokes operator with no-slip boundary condition (see [2]).

In this paper, we derive new extraction formulae for coefficients of the corner singularities, called the stress intensity
factors, in terms of the regular part and given external forces. They enable us to deduce a finite element method for the
regular part [w, σ ], so approximations of the stress intensity factors ci and the singular solution [u, p] are obtained. We
achieve the optimal error bound O(h) for w in H1. Also, we establish the error bound O(h1+λ1−ϵ) for w in L2, which implies
the same error bound for ci in the absolute value, where λ1 ∈ (1/2, 1) denotes the leading singular exponent determined
by the internal angle of non-convex corner. Although this analyzed error bound for w in L2 is not optimal, our numerical
experiments show the optimal convergence rate 2 for the L2-error ofw. This result is deduced from the H2-regularity ofw.

Regarding the stationary Stokes or Navier–Stokes problem, several numerical approaches have been investigated (see
[3–10]). In [11,12] finite elementmethodswere studiedwith the knowledge of corner singularities, and in [13–15] numerical
techniques refining triangulations were used in order to overcome the singularity of solutions. Also, some numerical
strategies for singular solution were proposed by defining a formula of the stress intensity factor ci. In [16], a global formula
of ci was introduced and a finite element solution was discussed. Then the error estimate |ci − ci,h| = O(h) was obtained,
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where ci,h denotes the approximation of ci. In [1], an expression of the coefficient ci is independent of the solution [u, p], so
the error estimate |ci − ci,h| = O(h2λ1−ϵ)was derived for ϵ > 0.

Similarly, there are various numerical strategies for the corner singularity of the second order elliptic boundary value
problem (see [17–21]). Especially, the Poisson problem has been studied by several finite element methods based on a
singular function expansion (see [22–28]), where the numerical methods are aimed at finding the approximations of the
stress intensity factor c and regular part w. In [23,28], a singular function method was considered by adding singular
function as finite element basis. In [22], a dual singular function method was introduced by giving the formula of c . In [24],
finite element multigrid methods for approximating c and w were studied, and in [25] crack singularities were allowed. In
[26,27], a new finite elementmethodwas proposed by giving a different formula of c in terms of onlyw and given functions.

Throughout this paper, we will use the following spaces and norms. For s ≥ 0, denote by Hs(Ω) the fractional order
Sobolev space with the norm ∥ · ∥s (see [29–31]). We note that L2(Ω) = H0(Ω) with the norm ∥v∥0 = (


Ω

|v|2dx)1/2. We
define C∞

0 (Ω) to be the linear space of infinitely differentiable functions with compact support onΩ . For s ≥ 0, denote by
Hs

0(Ω) the closure of C∞

0 (Ω) for the norm ∥ · ∥s. We have H1
0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}. Let H−s(Ω) be the dual space

of Hs
0(Ω)with the norm:

∥f ∥−s = sup
0≠v∈Hs

0(Ω)

⟨f , v⟩
∥v∥s

,

where ⟨, ⟩ is the duality pairing. Let L20(Ω) = {v ∈ L2(Ω) :

Ω
vdx = 0} and H̄s(Ω) = Hs(Ω) ∩ L20(Ω). As above, denote

by H̄−1(Ω) the dual space of H̄1(Ω)with the norm ∥f ∥H̄−1 = sup0≠v∈H̄1(Ω)⟨f , v⟩/∥v∥1. Also, X′ denotes the dual space of a
Banach space X. In this paper, C > 0 denotes a generic positive constant only depending onΩ .

This paper is organized as follows. In Section 2, we briefly discuss singular functions for the Stokes operator with no-slip
boundary condition and singular function expansion for singular solution of the Stokes equations. In Section 3, we derive
new extraction formulae for the stress intensity factors ci and give a well-posed problem for the regular part [w, σ ]. In
Section 4, we discretize the variational form for [w, σ ] and analyze error estimates for approximations of [w, σ ] and ci. In
Section 5, we describe an algorithm solving the discrete problem, based on the Sherman–Morrison–Woodbury formula, and
give some numerical examples to confirm analyzed convergence rates.

2. Preliminaries

In this section, we discuss a singular function expansion and regularity results regarding the stationary Stokes problem
on a two-dimensional domain with corners. LetΩ ⊂ R2 be a polygon with the boundary Γ := ∂Ω . Consider the stationary
incompressible Stokes equations as follows:

−µ1u + ∇p = f inΩ,
divu = g inΩ,

u = 0 on Γ ,
(2.1)

where u is the velocity vector, p the pressure function; f and g are given external functions satisfying

Ω
gdx = 0; µ > 0 is

a viscous number. In fact, the incompressible flow implies that the function g is originally zero, but in this paper we assume
that g may not be zero for general purpose. This assumption provides general formulae of stress intensity factors and the
general form (2.1) may be applicable to the compressible Stokes or Navier–Stokes equations (see [32–35]).

Regarding the stationary Stokes problem (2.1) on a polygon, regularity issues have been investigated. Basically, if
f ∈ L2(Ω) and g ∈ H̄1(Ω), then the existence and uniqueness of the solution [u, p] in H1

0(Ω) × L20(Ω) are guaranteed
(cf. Theorem 5.1 in Chapter I of [30]). Furthermore, we expect that the solution [u, p] belongs toH2(Ω)×H1(Ω), but it does
not hold for a non-convex polygon (see [2,36,37]). This situation is caused by corner singularities and such lack of regularity
reduces the accuracy of finite element solution. In order to restore the accuracy, several approaches were investigated in
various literatures. In particular, local mesh refinement methods have been widely used (see, for example, [38,39,15]).

Now, we introduce singular functions for the Stokes operator with no-slip boundary condition. Hereafter, it is assumed
that the boundary Γ has only one non-convex vertex P placed at the origin, for simplicity (for example, see Fig. 1). Let
ω > π be an opening angle at P , defined by ω := ω2 − ω1, where ωi are numbers satisfying ω1 < ω2 < ω1 + 2π . The
singular functions are given by considering a non-trivial solution of the Stokes problem on a sector S := {(r, θ) : r > 0 and
θ ∈ (ω1, ω2)} (see Section 5.1 in [40]). First, the eigenvaluesλi related to the singular functions are roots of the trigonometric
equation: sin2(λiω)− λ2i sin

2 ω = 0, where the first three eigenvalues are real, ordered by

Case 1. 1/2 < λ1 < π/ω < λ2 = 1 < λ3 < 2π/ω if ω ∈ (π, ω∗],
Case 2. 1/2 < λ1 < π/ω < λ2 < λ3 = 1 < 2π/ω if ω ∈ (ω∗, 2π),

(2.2)

where ω∗ ≈ 1.4303π is a number satisfying tanω∗ = ω∗. Then the singular functions [8i, φi] corresponding to λi are
defined by

8i = µ−1χ1rλiT i(θ), φi = χ1rλi−1ξi(θ), (2.3)
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