ARTICLE IN PRESS

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

Computer Service Servi

journal homepage: www.elsevier.com/locate/camwa

Existence of multiple solutions for modified Schrödinger-Kirchhoff-Poisson type systems via perturbation method with sign-changing potential

Jianhua Chen, Xianhua Tang*, Zu Gao

School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, PR China

ARTICLE INFO

Article history: Received 31 July 2016 Received in revised form 23 November 2016

Accepted 10 December 2016
Available online xxxx

Keywords:

Modified Schrödinger-Kirchhoff-Poisson system Nontrivial nonnegative solutions

Nontrivial nonnegative solutions
High energy solutions
Perturbation methods

ABSTRACT

In this paper, we prove the existence of positive solutions and negative solutions for the following modified Schrödinger–Kirchhoff–Poisson type systems

$$\begin{cases} -\left(a+b\int_{\mathbb{R}^3}\mid\nabla u\mid^2\right)\Delta u+V(x)u+\phi u-\frac{1}{2}u\Delta(u^2)=f(x,u), & \text{in } \mathbb{R}^3,\\ -\Delta\phi=u^2, & \text{in } \mathbb{R}^3, \end{cases}$$

where a>0, $b\geq0$, V and f are continuous functions and V(x) is allowed to be sign-changing. Under some certain assumptions on V and f, we prove the existence of nontrivial nonnegative solutions, nontrivial nonpositive solutions and sequence of high energy solutions via the perturbation method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

This article is concerned with a class of modified Schrödinger-Kirchhoff-Poisson system

$$\begin{cases} -\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u + V(x)u + \phi u - \frac{1}{2}u\Delta(u^2) = f(x,u), & \text{in } \mathbb{R}^3, \\ -\Delta \phi = u^2, & \text{in } \mathbb{R}^3, \end{cases}$$
(1.1)

where a > 0, $b \ge 0$, V and f are continuous functions and V(x) is allowed to be sign-changing.

Very recently, Batkam and Júnior [1] studied the following modified Schrödinger-Kirchhoff-Poisson system in Ω ,

$$\begin{cases} -\left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\right)\Delta u+\phi u=f(x,u), & \text{in } \Omega,\\ -\Delta \phi=u^{2}, & \text{in } \Omega,\\ u=\phi=0, & \text{on } \partial\Omega, \end{cases}$$

$$(1.2)$$

E-mail addresses: cjh19881129@163.com (J. Chen), tangxh@mail.csu.edu.cn (X. Tang), gaozu7@163.com (Z. Gao).

http://dx.doi.org/10.1016/j.camwa.2016.12.006

0898-1221/© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

where Ω is a bounded smooth domain of \mathbb{R}^N with N=1,2 or 3 and $f:\overline{\Omega}\times\mathbb{R}\to\mathbb{R}$ is a continuous function. The authors [1] proved that the problem (1.2) has at least three solutions: one positive, one negative, and one which changes its sign. Furthermore, in case f is odd with respect to u, the authors obtained unbounded sequence of sign-changing solutions. Moreover, if a=1 and b=0 in (1.2), Ruiz and Siciliano [2] proved the existence of multiplicity of solutions depending on two parameters and $f(x,u)=|u|^{s-1}s$, where $s\in(1,5)$. For more references of system (1.2), please see [3–6] and references therein

If we choose a = 1 and b = 0, then (1.1) reduces to the following modified Schrödinger–Poisson system

$$\begin{cases} -\Delta u + V(x)u + \phi u - \frac{1}{2}u\Delta(u^2) = f(x, u), & \text{in } \mathbb{R}^3, \\ -\Delta \phi = u^2, & \text{in } \mathbb{R}^3. \end{cases}$$

$$(1.3)$$

It is well known that (1.3) has been already studied via a perturbation method and Feng and Zhang [7] proved the existence of positive solutions, negative solutions by applying Mountain Mass theorem.

In the recent years, there are many papers dealing with the following modified Kirchhoff-type equation

$$-\left(a+b\int_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u+V(x)u-u\Delta(u^2)=f(x,u),\quad\text{in }\mathbb{R}^3. \tag{1.4}$$

In particular, Feng, Wu and Li [8] proved some existence results for positive solutions, negative solutions and sequence of high energy solutions via perturbation method with 4-superlinear nonlinearity on f. Afterwards, Wu et al. [9] studied the existence of infinitely many small energy solutions with local nonlinearities by applying Clask's Theorem to a perturbation functional. If we delete the quasilinear term $u\Delta(u^2)$, then there are many papers to study this problem. For this problem, we refer the reader to [10.11] and the references therein.

As far as we know, the paper [12] firstly used perturbation method to study the existence of solutions for quasilinear Schödinger equation in bounded smooth domain. Following the work of [12], Liu, Liu and Wang [13] proved the existence of multiple sign-changing solutions for generalized quasilinear Schödinger equation in bounded smooth domain. Subsequently, there are also many classical and interesting studies on quasilinear Schödinger equation and generalized quasilinear Schödinger equation in \mathbb{R}^N , see for instance [14–24] and the references therein.

With regard to sign-changing potentials on V, there are many papers studying this problem for different equations, see e.g. [25–29,10,30–34]. We consider the existence of multiple solutions for the problem (1.1) with sign-changing potentials. As far as we know, there are rarely papers to study the existence of multiple solutions for the problem (1.1) with sign-changing potential.

Next, we will use the following notation. Let

$$H^1(\mathbb{R}^3) = \left\{ u \in L^2(\mathbb{R}^3) : \nabla u \in L^2(\mathbb{R}^3) \right\}$$

endowed with the norm

$$||u||_{H^1} = \left(\int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) dx\right)^{1/2}$$

and the inner product

$$(u, v)_{H^1} = \int_{\mathbb{R}^3} (\nabla u \nabla v + uv) dx.$$

Set

$$H_V^1(\mathbb{R}^3) = \left\{ u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3} \widetilde{V}(x) u^2 dx < +\infty \right\}$$

endowed with the norm

$$||u||_{H_V^1} = \left(\int_{\mathbb{R}^3} (|\nabla u|^2 + \widetilde{V}(x)u^2) dx\right)^{1/2}$$

and the inner product

$$(u, v)_{H_V^1} = \int_{\mathbb{R}^3} (\nabla u \nabla v + \widetilde{V}(x) u v) dx$$

and $W^{1,4}(\mathbb{R}^3)$ endowed with the norm

$$||u||_{W^{1,4}} = \left(\int_{\mathbb{R}^3} (|\nabla u|^4 + u^4) dx\right)^{1/4}.$$

Download English Version:

https://daneshyari.com/en/article/4958569

Download Persian Version:

https://daneshyari.com/article/4958569

<u>Daneshyari.com</u>