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a b s t r a c t

In this paper, we propose a numerical method for delayed partial differential equations
that describe the dynamics of viral infections such as the human immunodeficiency
virus (HIV) and the hepatitis B virus (HBV). We first prove that the proposed numerical
method preserves the positivity and boundedness of solutions in order to ensure the well-
posedness of the problem. By constructing appropriate discrete Lyapunov functionals, we
show that the proposed method also preserves the global stability of equilibria of the
corresponding continuous system with no restriction on the space and time step sizes.
Moreover, the discrete model and main results presented in Qin et al. (2014) are extended
and generalized.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Infectious diseases caused by viruses such as HIV, HBV, Ebola and more recently Zika virus, represent a major global
health problem. According to theWorld Health Organization (WHO), about 240 million people worldwide live with chronic
HBV infection, andmore than 780 000 people die every year due to complications of hepatitis B, including cirrhosis and liver
cancer [1]. To better understand the dynamics of these infections, manymathematical models have been proposed by using
ordinary differential equations (ODEs), delay differential equations (DDEs) as well as partial differential equations (PDEs).
In this paper, we consider the generalized HBV infection model that was investigated in our recent work [2]. This model is
described by the following system of PDEs,

∂T
∂t

= λ− dT (x, t)− f

T (x, t), I(x, t), V (x, t)


V (x, t),

∂ I
∂t

= f

T (x, t − τ1), I(x, t − τ1), V (x, t − τ1)


V (x, t − τ1)e−α1τ1 − aI(x, t),

∂V
∂t

= dV△V + kI(x, t − τ2)e−α2τ2 − µV (x, t),

(1)

where T (x, t), I(x, t) and V (x, t) denote the densities of uninfected cells, infected cells and free virus at position x and time
t , respectively. λ is the recruitment rate of uninfected cells; k is the production rate of free virus by infected cells; d, a and
µ are the death rates of uninfected cells, infected cells and free virus, respectively. The first delay τ1 represents the time
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needed for infected cells to produce virions after viral entry and the factor e−α1τ1 accounts for the probability of surviving
from time t − τ1 to time t , where α1 is the death rate for infected but not yet virus-producing cells. The second delay τ2
denotes the time necessary for the newly produced virions to become mature and then infectious particles. The probability
of survival of immature virions is given by e−α2τ2 and the average life time of an immature virus is given by 1

α2
. Finally, dV is

the diffusion coefficient and△ is the Laplacian operator. All the parameters given in system (1) are positive constants and the
general incidence function f (T , I, V ) is continuously differentiable in the interior of R3

+
and satisfies the three fundamental

hypotheses given in [3] and used in [4–9], that are:

(H1) f (0, I, V ) = 0, for all I ≥ 0 and V ≥ 0,
(H2) f (T , I, V ) is a strictly monotone increasing function with respect to T , for any fixed I ≥ 0 and V ≥ 0,
(H3) f (T , I, V ) is a monotone decreasing function with respect to I and V , i.e., ∂ f

∂ I (T , I, V ) ≤ 0 and ∂ f
∂V (T , I, V ) ≤ 0 for all

T ≥ 0, I ≥ 0 and V ≥ 0.

From the biological point of view, the three hypotheses are reasonable and consistent with the reality. For more
details on the biological significance of these three hypotheses, we refer the reader to the works [10,11]. Furthermore,
the general incidence function f (T , I, V ) includes several types of incidence rate existing in the literature such as the
mass action or so-called bilinear incidence when f (T , I, V ) = βT , the standard incidence function was used in [12,13]
when f (T , I, V ) =

βT
T+I , the saturation incidence when f (T , I, V ) =

βT
1+αV , the incidence function was used in [14,15]

when f (T , I, V ) =
βT
T+V , Beddington–DeAngelis response when f (T , I, V ) =

βT
1+α1T+α2V

, Crowley–Martin response when

f (T , I, V ) =
βT

1+α1T+α2V+α1α2TV
and Hattaf–Yousfi response (see Section 4 in [16]) when f (T , I, V ) =

βT
α0+α1T+α2V+α3TV

, where
α, α0, α1, α2, α3 ≥ 0 are the saturation factors measuring the psychological or inhibitory effect and β > 0 is the infection
coefficient. In addition, system (1) is the generalization of all diffusive viral infection models presented in [17–23].

As viral particles cannot move outside of the liver and state variables represent the densities of hepatocytes (liver cells)
and virus, we have considered system (1) with Neumann boundary conditions given by

∂V
∂ν

= 0, on ∂Ω × (0,+∞), (2)

and initial conditions

T (x, s) = φ1(x, s) ≥ 0, I(x, s) = φ2(x, s) ≥ 0,

V (x, s) = φ3(x, s) ≥ 0, (x, s) ∈ Ω̄ × [−τ , 0],
(3)

where τ = max(τ1, τ2), Ω is a bounded domain in Rn with smooth boundary ∂Ω , and ∂v
∂ν

denotes the outward normal
derivative on ∂Ω . We have proved the existence, positivity and boundedness of solutions to ensure the well-posedness of
the problem. Further, we have investigated of the global stability of equilibria in terms of the basic reproduction number R0
which is given by

R0 =
k
au

f

λ

d
, 0, 0


e−α1τ1−α2τ2 .

System (1) includes three PDEs which cannot be solved explicitly. Also, statistical and clinical data on infectious diseases
are collected and analyzed at discrete times. For these reasons, we will discretize system (1) by using ‘mixed’ Euler method
that is a mixture of both forward and backward Euler methods. Recently, this numerical method is used for viral infection
models governed by ODEs in [24,25] and for delayed viral infection models governed by DDEs in [10]. The choice of the
discretization scheme is motivated by the work of Hattaf et al. [26]. Note that the authors Qin et al. [27] in their recent paper
discretized system (1) in the case without delays (τ1 = τ2 = 0) the incidence rate is bilinear (f (T , I, V ) = βT ). They proved
the positivity of approximate solutions by using the theory of M-matrices. Further, they established the global stability of
equilibria. But they not investigated the boundedness of solutions. In this study, we will prove that the delayed discrete
model obtained by the mixed Euler method maintains essential dynamical properties, such as positivity, boundedness and
global behaviors of solutions with no restriction on the space and time step sizes.

The organization of the rest of this paper is as follows. In thenext section,we introduce thenumericalmethod to discretize
system (1), and establish some preliminary results. In Section 3, we investigate the global dynamics of the delayed discrete
model derived from the discretization scheme by constructing appropriate discrete Lyapunov functionals. In Section 4, we
give an application and present some numerical simulations. The paper ends with a brief conclusion in Section 5.

2. Numerical method and preliminaries

In the following, we consider our model (1) in the spatial domain Ω = [xmin, xmax] where xmin, xmax ∈ R. Let 1t be
the time step size and 1x = (xmax − xmin)/N be the space step size with N is a positive integer. Assume that there exist
two integers (m1,m2) ∈ N2 with τ1 = m11t and τ2 = m21t . The space and time grid points are xn = xmin + n1x for
n ∈ {0, 1, . . . ,N} and tm = m1t for m ∈ N. The solution of system (1) at the discretized spatio-temporal point (xn, tm) is
T (xn, tm), I(xn, tm), V (xn, tm)


. Hence, we denote the approximations of T (xn, tm), I(xn, tm) and V (xn, tm) by Tm

n , Imn and Vm
n ,
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