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a b s t r a c t

In the current work we consider the numerical solutions of equations of stationary states
for a general class of the spatial segregation of reaction–diffusion systems with m ≥ 2
population densities. We introduce a discrete multi-phase minimization problem related
to the segregation problem, which allows to prove the existence and uniqueness of the
corresponding finite difference scheme. Based on that scheme, we suggest an iterative
algorithm and show its consistency and stability. For the special case m = 2, we show
that the problem gives rise to the generalized version of the so-called two-phase obstacle
problem. In this particular case we introduce the notion of viscosity solutions and prove
convergence of the difference scheme to the unique viscosity solution. At the end of
the paper we present computational tests, for different internal dynamics, and discuss
numerical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and known results

1.1. The setting of the problem

In recent years there have been intense studies of spatial segregation for reaction–diffusion systems. The existence of
spatially inhomogeneous solutions for competition models of Lotka–Volterra type in the case of two and more competing
densities has been considered in [1–7]. The aim of this paper is to study the numerical solutions for a certain class of the
spatial segregation of reaction–diffusion system withm population densities.

Let Ω ⊂ Rn, n ≥ 2 be a connected and bounded domain with smooth boundary and m be a fixed integer. We consider
the steady-states of m competing species coexisting in the same area Ω . Let ui denotes the population density of the ith
component with the internal dynamic prescribed by Fi.

We call them-tuple U = (u1, . . . , um) ∈ (H1(Ω))m, a segregated state if
ui(x) · uj(x) = 0, a.e. for i ≠ j, x ∈ Ω.

The problem amounts to

Minimize E(u1, . . . , um) =


Ω

m
i=1


1
2
|∇ui(x)|2 + Fi(x, ui(x))


dx (1)
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over the set

S = {(u1, . . . , um) ∈ (H1(Ω))m : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω},

where φi ∈ H
1
2 (∂Ω), φi · φj = 0, for i ≠ j and φi ≥ 0 on the boundary ∂Ω .

We assume that

Fi(x, s) =

 s

0
fi(x, v)dv,

where fi(x, s) : Ω × R+
→ R is Lipschitz continuous in s, uniformly continuous in x and fi(x, 0) ≡ 0.

Remark 1. Functions fi’s are defined only for non negative values of s (recall that our densities ui’s are assumed non
negative); thus we can arbitrarily define such functions on the negative semiaxis. For the sake of convenience, when s ≤ 0,
we will let fi(x, s) = −fi(x, −s). This extension preserves the continuity due to the conditions on fi defined above. In the
same way, each Fi is extended as an even function.

Remark 2. We emphasize that for the case fi(x, s) = fi(x), the assumption is that for all i the functions fi are nonnegative
and uniformly continuous in x. Also for simplicity, throughout the paper we shall call both Fi and fi as internal dynamics.

Remark 3. We would like to point out that the only difference between our minimization problem (1) and the problem
discussed by Conti, Terracini and Verzini [2], is the sign in front of the internal dynamics Fi. In our case, the plus sign of Fi
allows to get rid of some additional conditions,which are imposed in [2, Section 2]. Those conditions are important to provide
coercivity of a minimizing functional in [2]. But in our case the above given conditions together with convexity assumption
on Fi(x, s), with respect to the variable s are enough to conclude Fi(x, ui(x)) ≥ 0, which in turn implies coercivity of a
functional (1).

In order to speak on the local properties of the population densities, let us introduce the notion of multiplicity of a point
in Ω .

Definition 1. The multiplicity of the point x ∈ Ω is defined by:

m(x) = card {i : measure(Ωi ∩ B(x, r)) > 0, ∀r > 0} ,

where Ωi = {ui > 0}.

For the local properties of ui the same results as in [2] with the opposite sign in front of the internal dynamics fi hold.
Below, for the sake of clarity, we write down those results from [2] with appropriate changes.

Lemma 1 (Proposition 6.3 in [2]). Assume that x0 ∈ Ω , then the following holds:

(1) If m(x0) = 0, then there exists r > 0 such that for every i = 1, . . . ,m;

ui ≡ 0 on B(x0, r).

(2) If m(x0) = 1, then there are i and r > 0 such that in B(x0, r)

∆ui = fi(x, ui), uj ≡ 0 for j ≠ i.

(3) If m(x0) = 2, then there are i, j and r > 0 such that for every k and k ≠ i, j, we have uk ≡ 0 and in B(x0, r)

∆(ui − uj) = fi(x, (ui − uj))χ{ui>uj} − fj(x, −(ui − uj))χ{ui<uj}.

Next, we state the following uniqueness theorem due to Conti, Terracini and Verzini.

Theorem 1 (Theorem 4.2 in [2]). Let the functional inminimization problem (1) be coercive andmoreover each Fi(x, s) be convex
in the variable s, for all x ∈ Ω . Then, the problem (1) has a unique minimizer.

This theorem will play a crucial role in studying the difference scheme, especially for the case m = 2 where we will
reformulate it as a generalized two-phase obstacle problem. Note that in this case, the problem will be reduced to:

Minimize E(u1, u2) =


Ω

2
i=1


1
2
|∇ui(x)|2 + Fi(x, ui(x))


dx, (2)

over the set

S = {(u1, u2) ∈ (H1(Ω))2 : ui ≥ 0, u1 · u2 = 0, ui = φi on ∂Ω}.

Here φi ∈ H
1
2 (∂Ω) with property φ1 · φ2 = 0, φi ≥ 0 on the boundary ∂Ω .
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