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a b s t r a c t

This paper is concerned with the existence of global in time solutions of a time fractional
reaction–diffusion system with time fractional derivatives. Furthermore, the large time
behavior of bounded solutions is investigated. Our method of proof relies on a maximal
regularity result for fractional linear reaction–diffusion equations that has been derived by
Bajlekova (2001).
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1. Introduction

This paper is concerned with the existence of global in time positive solutions of the time fractional reaction–diffusion
system with a balance lawCDβ

t u − d1u = −uf (v), in Ω × R
+,

CDβ
t v − 1v = uf (v), in Ω × R

+,
(1)

supplemented with the boundary and initial conditions

∂u
∂η

(x, t) =
∂v

∂η
(x, t) = 0 on ∂Ω × R

+, (2)

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω, (3)

where Ω is a regular bounded domain in RN(N ≥ 1) with smooth boundary ∂Ω , ∂
∂η

denotes the normal derivative on ∂Ω ,

∆ stands for the Laplacian operator, d is the diffusion constant, u0 and v0 are nonnegative functions, CDβ
t , for β ∈ (0, 1), is

the Caputo fractional derivative of order β .
Concerning the nonlinearity f , we assume that there exist positive constants M1 and M2 and a real number p ≥ 1 such

that

0 ≤ f (v) ≤ M1|v|
p
+ M2, (4)
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and for all |v|, |ṽ| ≤ R, there exists a positive number L such that

|f (v) − f (ṽ)| ≤ L|v − ṽ|. (5)

Before presenting our results with their proofs, let us dwell upon some literature concerning reaction–diffusion systems
with a balance law. When considering the time evolution of the spatio-temporal concentrations of the species U and V of
the molecular combination

mU + nV → (n + 1)V ,

one is lead to the reaction–diffusion system
ut − a1u = −umvn, x ∈ Ω, t > 0,
vt − b1v = umvn, x ∈ Ω, t > 0, (6)

where Ω is the medium in which the molecular combination takes place. System (6) has been successfully studied by
Masuda [1], Martin, Hollis and Pierre [2], Kanel and Kirane [3] and Abdelmalek and Kouachi for a very general situation [4];
Ahmad et al. [5] studied the space fractional system

ut + (−∆)
α
2 u = −f (u, v), x ∈ R

n, t > 0,

vt − (−∆)
β
2 v = f (u, v), x ∈ R

n, t > 0,

via the duality argument.
Here, we want to see the influence of the fractional time derivatives on the behavior of the solutions.
Fractional derivatives occurwhen the system takes place in an irregular or fractalmedium. Needless to say that fractional

reaction–diffusion equations and system are currently extensively studied not only for the mathematical side but also for
their potential applications [6–8].

In this paper, we first prove that system (1)–(2)–(3) admits global solutions by relying on a maximal regularity result
derived by Bajlekova. We also derive the large time behavior of bounded solutions.

2. Preliminary results

In this section, we introduce some basic definitions of fractional calculus which are used here after, see [9].

Definition 2.1. For an integrable function f , the Riemann–Liouville integral of order β ∈ (0, 1) is defined by

Jβt f (t) :=
1

Γ (β)

 t

0
(t − s)β−1f (s) ds, t > 0,

where Γ is the Euler Gamma function.

Definition 2.2. For an absolutely continuous function f , the Caputo fractional derivative of order β ∈ (0, 1) is

CDβ
t f (t) := Dβ

t (f (t) − f (0)), t > 0, (7)

where Dβ
t is the Riemann–Liouville fractional derivative of order β given by

Dβ
t f (t) :=

d
dt

J1−β
t f (t). (8)

In particular, if f (0) = 0 we have

CDβ
t f (t) = Dβ

t f (t), t > 0. (9)

Lemma 2.3. It holds

Jβt
CDβ

t f (t) = f (t) − f (0), t > 0, (10)

and

CDβ
t J

β
t f (t) = f (t), t > 0. (11)

Definition 2.4. We denote by A the realization of −∆ with homogeneous Neumann boundary conditions in L2(Ω).
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