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a b s t r a c t

We develop and analyse a numerical method for the time-fractional nonlocal thermistor
problem. By rigorous proofs, some error estimates in different contexts are derived,
showing that the combination of the backward differentiation in time and the Galerkin
spectral method in space leads, for an enough smooth solution, to an approximation of
exponential convergence in space.
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1. Introduction

Fractional derivatives express properties of memory and heredity of materials, which is their main benefit when
compared with integer-order derivatives. Practical problems require definitions of fractional derivatives that allow the use
of physically interpretable initial conditions. Fractional time derivatives are linked with irregular sub-diffusion, where a
darken of particles spread slower than in classical diffusion. The fractional space derivatives are used to model irregular
diffusion or dispersion, where a particle spreads at a rate that does not agree with the classical Brownian motion, and the
following can be asymmetric [1].

Fractional differential and integro-differential equations occur in different real processes and physical phenomena,
such as in signal processing and image processing, optics, engineering, control theory, computer science (such as real
neural networks, complex neural networks and information technology), statistics and probability, astronomy, geophysics,
hydrology, chemical technology, materials, robots, earthquake analysis, electric fractal network, statistical mechanics,
biotechnology, medicine, and economics [2–5].

In this paper, we consider the problem of the nonlocal time-fractional thermistor problem. This fractional model is
obtained from the integer order one

∂u(x, t)
∂t

− △u =
λf (u)

Ω
f (u) dx

2 , in QT = Ω × (0, T ), (1)
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by replacing the derivative term by a fractional derivative of order α > 0:

∂αu
∂tα

− △u =
λf (u)

Ω
f (u) dx

2 , in QT = Ω × (0, T ),

∂u
∂n

= 0, on ST = ∂Ω × (0, T ),

u(0) = u0, inΩ,

(2)

where ∂αu(x,t)
∂tα denotes the Caputo fractional derivative of order α, 0 < α < 1, as defined in [6] and given by

∂αu(x, t)
∂tα

=
1

Γ (1 − α)

 t

0

∂u(x, s)
∂s

ds
(t − s)α

, 0 < α < 1,

with △ the Laplacian with respect to the spacial variables and where f is assumed to be a smooth function, as prescribed
below, and T is a fixed positive real. Here n denotes the outward unit normal and ∂

∂n = n · ∇ is the normal derivative
on ∂Ω . Such problems arise in many applications, for instance, in studying the heat transfer in a resistor device whose
electrical conductivity f is strongly dependent on the temperature u. Constant λ is a dimensionless parameter, which can
be identified with the square of the applied potential difference at the ends of the conductor. Function u represents the
temperature generated by the electric current flowing through a conductor.

A fractional order model instead of its classical integer order counterpart has been considered here because fractional
order differential equations are generalizations of integer order differential equations and fractional order models possess
memory. Moreover, the fact that resistors are influenced bymemorymakes fractional modelling appropriate for this kind of
dynamical problems. We use Caputo’s definition. The main advantage is that the initial conditions for fractional differential
equations with Caputo derivatives take the same form as for integer-order differential equations. Note that (2) covers (1)
and extends it to more general cases. The classical nonlocal thermistor problem (1) with the time derivative of integer
order can be obtained by taking the limit α → 1 in (2) (see [7]), while the case α = 0 corresponds to the steady state
thermistor problem. In the case 0 < α < 1, the Caputo fractional derivative depends on and uses the information of the
solutions at all previous time levels (non-Markovian process). In this case the physical interpretation of fractional derivative
is that it represents a degree of memory in the diffusing material. Such kind of models have been analytically investigated
by a number of authors, using Green functions, the Laplace and Fourier–Laplace transform methods, in order to construct
analytical solutions. However, papers in the literature on the numerical solutions of time fractional differential equations
are still under development. In [8], existence and uniqueness of a positive solution to a generalized spatial fractional-order
nonlocal thermistor problem is proved. Stability and error analysis of the semi-discretized fractional nonlocal thermistor
problem is investigated in [9,10]. More precisely, in [9,10] a finite difference method is proposed, respectively for solving
the semidiscretized fractional nonlocal thermistor problem and the time fractional thermistor problem, which is a system
of elliptic–parabolic PDEs and where some stability as well as error analysis for this scheme is derived for both problems.
Herein, an approach based on finite differences combined with the Galerkin spectral method is used to solve the nonlocal
time fractional thermistor problem. By definition of fractional derivative, to compute the solution at the current time level
one needs to save all the previous solutions, which makes the storage expensive if low-order methods are employed for
spatial discretization. One of the main advantage of the spectral method is the fact that it can relax this storage limit since
it needs fewer grid points to produce a highly accurate solution [11,12].

The text is organized as follows. In Section 2 a finite difference scheme for the temporal discretization of problem (2) is
introduced. Then, in Section 3, we provide a finite difference-Galerkin spectral method to obtain error estimates of (2−α)-
order convergence in time and exponential convergence in space, for smooth enough solutions. The proof of our main result
(Theorem 3) is given in Section 4. Finally, in Section 5 we carry out an error analysis between the solution uk

N of the full
discretized problem and the exact solution u. We end with Section 6 of conclusions and future work.

2. Time discretization: a finite difference scheme

Several theoretical analyses, on various aspects of both steady-state and time-dependent thermistor equations, with
different aspects and types of boundary and initial conditions, have been carried out in the literature. For existence of weak
solutions, uniqueness and related regularity and smoothness results, in several settings and under different assumptions
on the coefficients, we refer the reader to [13]. For our purposes, the L∞-energy method is a suitable and powerful tool to
prove existence, regularity, and uniqueness of solutions to (2). From the results of [14], it follows by the L∞-energy method
that problem (2) has a unique and sufficiently smooth solution under the following assumptions:

(H1) f : R → R is a positive Lipschitz and C1 continuous function;
(H2) there exist positive constants c and β such that for all ξ ∈ R we have c ≤ f (ξ) ≤ c|ξ |β+1

+ c;
(H3) u0 ∈ W 1,∞(Ω).
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