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a b s t r a c t

Fractional partial differential equations (FPDEs) provide better modeling capabilities
for challenging phenomena with long-range time memory and spatial interaction than
integer-order PDEs do. A conventional numerical discretization of space–time FPDEs
requires O(N2

+ MN) memory and O(MN3
+ M2N) computational work, where N is the

number of spatial freedoms per time step andM is the number of time steps.
We develop a fast finite difference method (FDM) for space–time FPDE: (i) We utilize

the Toeplitz-like structure of the coefficientmatrix to develop amatrix-free preconditioned
fast Krylov subspace iterative solver to invert the coefficient matrix at each time step.
(ii) We utilize a divide-and-conquer strategy, a recursive direct solver, to handle the tem-
poral coupling of the numerical scheme. The fast method has an optimal memory require-
ment of O(MN) and an approximately linear computational complexity of O(NM(logN +

log2 M)), without resorting to any lossy compression. Numerical experiments show the
utility of the method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

FPDEs provide better modeling capabilities for challenging phenomena with long-range time memory and spatial
interactions than integer-order PDEs do [1–6]. However, due to the nonlocal nature of fractional differential operators,
the numerical schemes of FPDEs give rise to dense stiffness matrices and/or long tails in time or a combination of both.
Traditionally, a time-marching solutionmethodwith direct solvers has beenused to solve these schemes that requireO(N2

+

MN)memory andO(MN3
+M2N) overall computationalwork, whereN is the number of spatial unknowns at each time step

andM is the number of time steps. This is deemed computationally very expensive in terms of computational complexity and
memory requirement, especially for problems inmultiple space dimensions [7,8]. The significantly increased computational
complexity and memory requirements is one of the main reasons why FPDE models have not been used widely.

In this paper we develop a divide-and-conquer fast FDM for space–time FPDE: (i) We utilize the Toeplitz-like structure
of the coefficient matrix to develop a matrix-free preconditioned fast Krylov subspace iterative method to invert the
coefficient matrix at each time step. (ii) We utilize a divide-and-conquer strategy, a recursive direct solver, to handle
the temporal coupling of the numerical scheme. The fast method has an optimal memory requirement of O(MN) and an
approximately linear computational complexity of O(NM(logN + log2 M)), without resorting to any lossy compression.
Numerical experiments show the utility of the method.
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The rest of the paper is organized as follows. In Section 2 we present the model space–time FPDE and its finite difference
discretization. In Section 3 we develop a matrix-free preconditioned fast Krylov subspace iterative method to invert the
coefficient matrix of the FDM, without resorting to any lossy compression, but rather, by exploring the structure of the
coefficient matrix. In Section 4 we present a divide-and-conquer fast FDM for the space–time FPDE. In Section 5 we carry
out numerical experiments to investigate the performance of the divide-and-conquer fast FDM.

2. A space–time FPDE and its finite difference discretization

We consider the space–time FPDE in one space dimension [9,4,5]

C
0D

β
t u(x, t) − d+(x, t)aDα

x u(x, t) − d−(x, t)xDα
b u(x, t) = f (x, t),

a < x < b, 0 < t ≤ T , 1 < α < 2, 0 < β < 1,
u(a, t) = u(b, t) = 0, 0 ≤ t ≤ T , u(x, 0) = 0, a ≤ x ≤ b.

(2.1)

Here C
0D

β
t u is the Caputo fractional derivative of order β defined by

C
0D

β
t u(x, t) :=

1
Γ (1 − β)

 t

0

∂u(x, s)
∂s

(t − s)−βds. (2.2)

d+(x, t) and d−(x, t) are the left-sided and right-sided diffusivity coefficients, and f (x, t) is the source and sink term. aDα
x u

and xDα
b u are the left-sided and right-sided Grünwald–Letnikov fractional derivatives of order α [6]

aDα
x u(x, t) := lim

ε→0+

1
εα

⌊(x−a)/ε⌋
k=0

g(α)
k u(x − kε, t),

xDα
b u(x, t) := lim

ε→0+

1
εα

⌊(b−x)/ε⌋
k=0

g(α)
k u(x + kε, t)

(2.3)

where ⌊x⌋ represents the floor of x, and g(α)
k = (−1)k


α

k


with


α

k


being the fractional binomial coefficients.

For the homogeneous initial condition, the Caputo time-fractional derivative C
0D

β
t u and the Grünwald–Letnikov time-

fractional derivative 0D
β
t u coincide [6,10]. Hence, we can replace the Caputo time-fractional derivative C

0D
β
t u in (2.1) by the

following Grünwald–Letnikov time-fractional derivative

0D
β
t u(x, t) := lim

ε→0+

1
εβ

⌊t/ε⌋
k=0

g(β)

k u(x, t − kε) (2.4)

in the development of numerical schemes.
Let N and M be two positive integers. Let h := (b − a)/(N + 1) be a spatial mesh size and τ := T/M be a time step

size. We define a uniform spatial partition xi := a + ih for i = 0, 1, . . . ,N + 1 and a uniform temporal partition tm := mτ
for m = 0, 1, . . . ,M . Let um

i be the finite difference approximations to u(xi, tm), dm
+,i := d+(xi, tm), dm

−,i := d−(xi, tm), and
f mi := f (xi, tm). A shifted Grünwald approximation to the space-fractional derivatives gives rise to the implicit FDM for
problem (2.1)

1
τ β

m−1
k=0

g(β)

k um−k
i −

dm
+,i

hα

i
k=0

g(α)
k um

i−k+1 −
dm

−,i

hα

N−i+1
k=0

g(α)
k um

i+k−1 = f mi , 1 ≤ i ≤ N, 1 ≤ m ≤ M. (2.5)

Traditionally, the FDM (2.5) is solved in a time-marching fashion

Amum
= f̂ m

:= τ β f m
−

m−1
k=1

g(β)

k um−k, 1 ≤ m ≤ M. (2.6)

Here um and f m are vectors of size N defined by

um
= [um

1 , um
2 , . . . , um

N ]
T, f m = [f m1 , f m2 , . . . , f mN ]

T, (2.7)

and the coefficient matrix Am is defined by

Am
:= IN + Sm, (2.8)
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