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a b s t r a c t

Latterly, many problems arising in different fields of science and engineering can be
reduced, by applying some appropriate discretization, to a series of time-fractional partial
differential equations. Unlike the normal case derivative, the differential order in such
equations is with a fractional order, which will lead to new challenges for numerical
simulation. The purpose of this analysis is to introduce the reproducing kernel Hilbert
space method for treating classes of time-fractional partial differential equations subject
to Neumann boundary conditions with parameters derivative arising in fluid-mechanics,
chemical reactions, elasticity, anomalous diffusion, and population growth models. The
method provides appropriate representation of the solutions in convergent series formula
with accurately computable components. Numerical experiments with different order
derivatives degree are performed to support the theoretical analyses which are acquired
by interrupting the n-term of the exact solutions. Finally, the obtained outcomes showed
that the proposed method is competitive in terms of the quality of the solutions found and
is very valid for solving such time-fractional Neumann problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The one-dimensional nonlinear fractional models, which are representative in the time-fractional partial differential
equations (PDEs), have been studied to describe numerous realism matters successfully not only in physics, but also in
engineering, biology, economics, and other sciences [1–5]. Such models are utilized extensively by many experts to explain
their complicated structures easily, simplified the controlling design without any loss of hereditary behaviors as well
as create nature issues closely understandable for these phenomena. Consequently, fractional derivatives provide more
accurate models of realism problems than integer-order derivatives; they are actually found to be a suitable tool to describe
certain physical and engineering problems including reaction diffusion models, dynamical mathematical models, electrical
circuits models, signal processing models, and so on [6–13]. Developing analytical and numerical methods for the solutions
of time-fractional PDEs is a very important task. Indeed, it is difficult to obtain exact solutions form in general for most
cases. Therefore, attempts have been made to propose analytical methods that approximate the exact solutions of such
equations [6–35].

The purpose of this analysis is to investigate and implement a computational iterative method, the reproducing kernel
Hilbert space method (RKHSM), in finding approximate solutions for various certain classes of Neumann time-fractional
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PDEs with parameters derivative in the sense of Riemann–Liouville and Caputo fractional derivatives. More specifically, we
consider two types of time-fractional models in the fractional operator form.

(I) The following general form of nonlinear second-order time-fractional PDE with constant coefficients:

∂tu (x, t) =


Aα 0D

1−α
t + Bβ 0D

1−β
t

 
∂2x2u (x, t)


−


Cα 0D

1−α
t + Dβ 0D

1−β
t


[u (x, t)] + f (x, t, u (x, t)) , (1)

subject to the following initial and Neumann boundary conditions:

u (x, 0) = ω (x) ,
∂xu (0, t) = υ1 (t) , ∂xu (L, t) = υ2 (t) ,

(2)

where 0 < α, β < 1, 0 ≤ t ≤ T ∈ R, 0 ≤ x ≤ L ∈ R, Aα, Bβ , Cα,Dβ are nonnegative real constants, f is continuous real-
valued function, u is an unknown function to be determined. Here, 0D

1−γ
t denote the Riemann–Liouville time-fractional

derivatives operator of order 1 − γ of a function u (x, t) and defined as

0D
1−γ
t u (x, t) =

1
Γ (γ )

∂t

 t

0
(t − τ)γ−1 u (x, τ ) dτ , 0 < τ < t, 0 < γ < 1. (3)

To specify more, the time-fractional PDE of Eq. (1) consists of the following well-known certain equations as special
cases:

• If Bβ = Cα = Dβ = 0 and f (x, t, u (x, t)) = g (x, t), then we obtain the time-fractional heat equation. The heat equation
is derived from Fourier’s law and conservation of energy, it is used in describing the distribution of heat or variation in
temperature in a given region over time [14,15].

• If Bβ = Cα = 0, then we obtain the time-fractional cable equation. The cable equation is derived from the cable equation
for electrodiffusion in smooth homogeneous cylinders, it is occurred due to anomalous diffusion and is used in modeling
the ion electrodiffusion at the neurons [16,17].

• If Cα = Dβ = 0 and f (x, t, u (x, t)) = g (x, t), then we obtain the time-fractional modified anomalous subdiffusion
equation. The modified anomalous subdiffusion equation is derived from the neural cell adhesion molecules, it is used
for describing processes that become less anomalous as time progresses by the inclusion of a second fractional time
derivative acting on the diffusion term [18,19].

(II) The following general form of nonlinear second-order time-fractional PDE with variable coefficients:

∂αtαu (x, t) =

∂2x2p (x, u (x, t))− ∂xq (x, u (x, t))


[u (x, t)] + f (x, t, u (x, t)) , (4)

subject to the following initial and Neumann boundary conditions:

u (x, 0) = ω1 (x) ,
∂xu (0, t) = υ1 (t) , ∂xu (L, t) = υ2 (t) ,

(5)

where 0 < α < 1, 0 ≤ t ≤ T ∈ R, 0 ≤ x ≤ L ∈ R, f is continuous real-valued functions, u is an unknown function
to be determined. Here, ∂αtα = ∂α/∂tα denote the Caputo time-fractional derivatives operator of order α of a function
u (x, t) and defined as

∂αtαu (x, t) =
1

Γ (1 − α)

 t

0
(t − τ)−α ∂τu (x, τ ) dτ , 0 < τ < t, 0 < α < 1. (6)

To specify more, the time-fractional PDE of Eq. (4) consists of the following well-known certain equations as special
cases:

• If p (x, u (x, t)) = 1, q (x, u (x, t)) = 0, and f (x, t, u (x, t)) = −Eαu (x, t) + g (x, t), then we obtain the time-
fractional reaction subdiffusion equation. The reaction subdiffusion equation appears inmany different areas of chemical
reactions, such as exciton quenching, recombination of charge carriers or radiation defects in solids, and predator–pray
relationships in ecology [20,21].

• If f (x, t, u (x, t)) = 0, then we obtain the time-fractional Fokker–Planck equation [22,23]. The Fokker–Planck
equation arises in many phenomena in plasma and polymer physics, population dynamics, neurosciences, nonlinear
hydrodynamics, pattern formation, and psychology [24–27].

• If p (x, u (x, t)) = 1, q (x, u (x, t)) = 0, and f (x, t, u (x, t)) = Fαu (x, t) (1 − Gαun (x, t)) + g (x, t), then we obtain
the time-fractional Fisher’s equation when n = 1 and the time-fractional Newell–Whitehead equation when n = 2.
The Fisher’s equation is used to describe the population growth models [28,29], whilst, the Newell–Whitehead equation
arises in fluid dynamics model and capillary–gravity waves [30,31].

The RKHSM is a numerical, as well as, analytical technique for solving a large variety of ordinary and PDEs associated
to different kinds of order derivatives degree, and usually provides the solutions in terms of rapidly convergent series
with components that can be elegantly computed. The advantages of the utilized approach lie in the following; firstly, it
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