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a b s t r a c t

The modified Szabo wave equation is one of the various models that have been devel-
oped to model the power law frequency-dependent attenuation phenomena in lossy me-
dia. The purpose of this study is to develop two different efficient numerical methods for
the two-dimensional Szabo equation and to compare the relative merits of each method.
In both methods we employ the ADI scheme to split directions, however, we use different
time discretization. Specifically, in the first ADI method (ADI-I) we include a third-order
correction term to achieve second-order convergence for smooth solutions, hence ex-
tending the work of Sun and Wu (2006). In the second ADI method (ADI-II), we employ
the scheme in Zeng et al. (submitted for publication) to two dimensional fractional wave
equation using multiple correction terms to enhance accuracy for non-smooth solutions.
Our simulation results show that both methods are computationally efficient for the frac-
tionalwave equation but have different advantages in terms of accuracy. Specifically, ADI-II
seems to producemore accurate results than ADI-I for non-smooth solutions. However, for
smooth solutions and fractional order close to two, ADI-I seems to outperform ADI-II.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The attenuation of wave energy in lossymedia γ (·) exhibits a frequency dependency characterized by a power law [1–4]

γ (ω) = γ0|ω|
α, (1)

inwhich γ0 andα are empirical parameters obtained by fittingmeasured data. It has been found thatwhen the sound travels
in lossy media, such as biological tissues and sediment, the exponent α falls between (0, 2), as shown in Fig. 1 (i.e., α is the
slope). The classical damped wave equation corresponds to α = 0, which shows frequency independence. However, in real
applications there is a frequency-squared dependent attenuation, which means α = 2 [2,3].
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Fig. 1. Power law frequency-dependent wave attenuation of biological tissues.
Source: Adopted from Ref. [5].

Szabo [2,3] proposed the following equation written in the time-domain for both longitudinal and shear waves with an
attenuation term of the form,
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and c0 is the sound speed. However, this model contains a convolutional operator which brings in a hypersingularity. Thus,
Chen and Holm [4] modified the model by incorporating a positive fractional derivative, which is formulated as
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where the fractional operator Qt,α(·) instead of Lt,α(·) is defined as follows:
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The positive fractional derivative is defined by
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where q(α) can be written as

q(α) =
π

2Γ (α + 1) cos[(α + 1)π/2]
. (7)

Thus, the modified Szabo wave equation can also be written as

1
c20
∂2t u +

2α0

c0 cos(απ/2)
∂α+1
t u = 1u. (8)

Subsequently, Chen and Holm extended their own work by including the fractional Laplacian operator in space [6]. Kelly
et al. [7] also modified the aforementioned wave equation by adding a second time-fractional term to arrive at the
power law wave equation. Recently, starting from the characteristic impedance and propagation coefficient, Chen et al. [8]
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