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ARTICLE INFO ABSTRACT

Article history: The modified Szabo wave equation is one of the various models that have been devel-
Available online xxxx oped to model the power law frequency-dependent attenuation phenomena in lossy me-
dia. The purpose of this study is to develop two different efficient numerical methods for
Keywords: the two-dimensional Szabo equation and to compare the relative merits of each method.
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In both methods we employ the ADI scheme to split directions, however, we use different
time discretization. Specifically, in the first ADI method (ADI-I) we include a third-order
correction term to achieve second-order convergence for smooth solutions, hence ex-
tending the work of Sun and Wu (2006). In the second ADI method (ADI-II), we employ
the scheme in Zeng et al. (submitted for publication) to two dimensional fractional wave
equation using multiple correction terms to enhance accuracy for non-smooth solutions.
Our simulation results show that both methods are computationally efficient for the frac-
tional wave equation but have different advantages in terms of accuracy. Specifically, ADI-II
seems to produce more accurate results than ADI-I for non-smooth solutions. However, for
smooth solutions and fractional order close to two, ADI-I seems to outperform ADI-II.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The attenuation of wave energy in lossy media y (-) exhibits a frequency dependency characterized by a power law [1-4]

Y (@) = polwl®,

(1)

in which yy and « are empirical parameters obtained by fitting measured data. It has been found that when the sound travels
in lossy media, such as biological tissues and sediment, the exponent « falls between (0, 2), as shown in Fig. 1 (i.e., « is the
slope). The classical damped wave equation corresponds to = 0, which shows frequency independence. However, in real
applications there is a frequency-squared dependent attenuation, which means « = 2 [2,3].
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Fig. 1. Power law frequency-dependent wave attenuation of biological tissues.
Source: Adopted from Ref. [5].

Szabo [2,3] proposed the following equation written in the time-domain for both longitudinal and shear waves with an
attenuation term of the form,

1 20[0
= 07U+ —Lo(u) = Au, (2)
CO Co
where the operator L; , () is defined as follows:

8[u, o = 0,
2 (a +2) cos[(a + D /2] ¥ u(7)
Liogu) = 41— - /(; = r)“”dt, 0<a<?2, (3)
af’u, o =2,

and ¢ is the sound speed. However, this model contains a convolutional operator which brings in a hypersingularity. Thus,
Chen and Holm [4] modified the model by incorporating a positive fractional derivative, which is formulated as

20[0

1
?83u+ — QW) = Au, (4)
0

0
where the fractional operator Q; ,(-) instead of L; ,(-) is defined as follows:

8tu, o = O7
Qo) =13y, 0<a<2, 5)
du, a=2.

The positive fractional derivative is defined by

1 P (T)
Dag@+ 1) Jy tonpdt 0=e=t
a:‘(-‘-]u(t) — (a + q tO » (6)
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where q(«) can be written as

T
= . 7
1) = @+ 1) cosl@ + D /2] )
Thus, the modified Szabo wave equation can also be written as
20[0
2 3%ty = Au. (8)

% cocos(am/2) *
Subsequently, Chen and Holm extended their own work by including the fractional Laplacian operator in space [6]. Kelly
et al. [7] also modified the aforementioned wave equation by adding a second time-fractional term to arrive at the
power law wave equation. Recently, starting from the characteristic impedance and propagation coefficient, Chen et al. [8]
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