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a b s t r a c t

A fast preconditionedpolicy iterationmethod is proposed for theHamilton–Jacobi–Bellman
(HJB) equation involving tempered fractional order partial derivatives, governing the val-
uation of American options whose underlying asset follows exponential Lévy processes.
An unconditionally stable upwind finite difference schemewith shifted Grünwald approx-
imation is first developed to discretize the established HJB equation under the tempered
fractional diffusion models. Next, the policy iteration method as an outer iterative method
is utilized to solve the discretized HJB equation and proven to be convergent in finite
steps to its numerical solution. Given the Toeplitz-like structure of the coefficientmatrix in
each policy iteration, the resulting linear system can be fast solved by the Krylov subspace
method as an inner iterative method via fast Fourier transform (FFT). Furthermore, a novel
preconditioner is proposed to speed up the convergence rate of the inner Krylov subspace
iteration with theoretical analysis to ensure the linear system can be solved in O(N logN)
operations under somemild conditions, where N is the number of spatial node points. Nu-
merical examples are given to demonstrate the accuracy and efficiency of the proposed fast
preconditioned policy method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An American option is a financial instrument that gives its buyer the right, but not the obligation, to buy (or sell) an asset
at a predetermined price at any time step up to a certain terminal time T . This additional early exercise right, compared
with a European option, casts the American option pricing problem into the following highly nonlinear and comparably
intriguing linear complementarity problem (LCP) [1],

LBV (x, t) ≥ 0,
V (x, t) ≥ V ∗(x),
LBV (x, t) · (V (x, t) − V ∗(x)) = 0,

(1.1)

for (x, t) ∈ R × [0, T ) with the terminal condition V (x, T ) = V ∗(x) where V ∗(x) denotes the payoff function of the option
(e.g.,max{K−ex, 0} for a put option),LB is a linear differential operator variedwith themodel assumption for the underlying
price St , and x = ln S.
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Black and Scholes (BS) [2] initiated the option pricing theory in 1973, under which the underlying price is assumed
to follow a geometric Brownian motion with constant drift and volatility. However, it has been known for many years
that the classic BS model suffers from some shortcomings and for example is not capable of explaining many impor-
tant empirical facts of financial markets, like skewed and heavy tailed return distributions or large, sudden movements
in stock prices. Thus, despite the superior analytical tractability of the geometric Brownian motion model, many authors
proposed the more general class of exponential Lévy processes as the underlying model for prices of financial quantities
[3], including the jump–diffusion [4,5] and infinite activity Lévy processes (finite moment log stable (FMLS) model [6],
Carr–Geman–Madan–Yor (CGMY) model [7], KoBoL model [8], etc.).

The American option pricing problem under the framework of exponential Lévy processes is a widely discussed problem.
According to [3], when the Brownian motion component is replaced by a Lévy process, the BS equation becomes a partial
integro-differential equation (PIDE). Since most of such PIDEs are hardly solved in closed form, efficient numerical methods
become essential. Six efficient methods based on a linear complementarity formulation and finite difference discretizations
was given by Salmi and Toivanen [9] under finite activity jump–diffusion models. In this paper, we focus on the infinite
activity Lévy processes. Almendral and Oosterlee in [10] and Wang, Wan and Forsyth in [11] considered pricing American
options numerically under the CGMY process with different method to discretize the integral part. Recently, Cartea and
del-Castillo-Negrete [12] creatively showed that for some particular Lévy processes, including CGMY and KoBoL models,
the European barrier option value satisfies a tempered fractional partial differential equation (TFPDE). The application of
fractional calculus to optionpricing problem is increasingly recognized, due to thenon-local nature of the fractional operator,
which weights information of the option over a range of underlying values rather than narrowly focusing on some localized
information. American option pricing problem under the FMLS model via fractional partial differential equation (FPDE)
framework was initiated in [13] by using the power penalty method and extended in [14] bymeans of a predictor–corrector
approach. American option pricing problem under the KoBoL model via TFPDE framework was considered in [15] by using
the standard penalty method [16,17]. Currently, policy iteration method, developed in [18] for the numerical solution of
Hamilton–Jacobi–Bellman (HJB) equations, was applied as an easy way of pricing American options [19]. Policy iteration
method is based on the interpretation of LCP problem (1.1) as the following HJB equation,

min{LBV (x, t), V (x, t) − V ∗(x)} = 0. (1.2)

For solving the above HJB equation numerically, the finite difference method with shifted Grünwald approximation
proposed in [20] is used to discretize it. Next, the policy iteration method developed in [18] can be utilized for solving
the discretized HJB equation and consequently a linear system needs to be solved per policy iteration. To the best of our
knowledge, there have not been any papers on solving the discrete HJB equation with tempered fractional derivatives so far,
and therefore this is one of main aims in this paper. To fastly solve the resultant linear system under tempered fractional
diffusion models, there are several fast algorithms that have been proposed, such as fast conjugate gradient method for
pricing double barrier options [21], preconditioned technique for pricing barrier options [22], and band preconditioner for
pricing European options [23]. Given the Toeplitz-like matrix structure, which is distinct from the above-mentioned papers,
a novel preconditioner based on approximating the inverse of coefficient matrix is proposed in this paper.

The contributions of the present paper are as follows. First of all, under the tempered fractional diffusion models,
including the CGMY model and the KoBoL model, an unconditionally stable upwind finite difference scheme with shifted
Grünwald approximation is used to discretize the HJB equation governing the American option price, where the tempered
fractional derivative is defined inGrünwald–Letnikov sense [24],which gives rise to theM-Matrix structure of the coefficient
matrix. Secondly, policy iterationmethod as an outer iteration is utilized as an easy and efficient way to solve the discretized
HJB equation. Compared with the penalty method, it averts the question about how large is appropriate for the penalty
parameterλ in [15]. Thirdly, the Toeplitz-like structure of the coefficientmatrix is foundper outer iteration and consequently
the resulting linear system can be fastly solved by the Krylov subspace method as an inner iterative method via fast Fourier
transform (FFT). To be noted, for such Toeplitz-likematrix, a novel preconditioner is implemented to accelerate convergence
rate of this inner iteration. Last but not least, to show the effectiveness and efficiency of the proposed numerical method, it
is applied to price the American put option and calculate its Greeks.

The structure of this paper is organized as follows. In Section 2, we introduce the Lévy processes and give the HJB
equations involving tempered fractional derivatives for pricing American options under the specific models. In Section 3, an
upwind finite difference scheme with shifted Grünwald approximation is constructed for the above-given HJB equations,
and proven to be unconditionally stable. In Section 4, we introduce the fast policy iteration method to solve the discretized
HJB equations with convergent analysis. In Section 5, a novel preconditioner is proposed to speed up the convergence rate of
the inner Krylov subspace method. In Section 6, we validate our proposed method with numerical experiments. Conclusion
will be given in Section 7.

2. Exponential Lévy processes

From [3], option pricing for pure jump processes will result in an incomplete market, which implies the risk-neutral
measure is not unique. To choose the risk-neutral measures, see [3] for details. For this paper, we assume the risk-neutral
measure P is given. We consider a more general financial framework: under the predefined filtered probability space
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