ARTICLE IN PRESS

Computers and Mathematics with Applications **I** (**IIII**) **III**-**III**

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Regularity criteria for some simplified non-isothermal models for nematic liquid crystals

Weijiang Gu^a, Jishan Fan^b, Yong Zhou^{c,d,*}

^a Center for Information, Nanjing Forestry University, Nanjing 210037, PR China

^b Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, PR China

^c School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, PR China

^d Department of Mathematics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

ARTICLE INFO

Article history: Received 25 May 2016 Received in revised form 6 September 2016 Accepted 12 October 2016 Available online xxxx

This paper is dedicated to Professor Gen Nakamura and Professor Fahuai Yi on the occasion of their 70th birthday

Keywords: Regularity criterion Non-isothermal Liquid crystals

1. Introduction

In this paper we first consider the following simplified nonisothermal model for nematic liquid crystals [1]:

$\partial_t \rho + \operatorname{div}\left(\rho u\right) = 0,$	(1.1)
$\operatorname{div} u = 0,$	(1.2)
$\partial_t(\rho u) + \operatorname{div}\left(\rho u \otimes u\right) + \nabla \pi - \operatorname{div}\left(\mu(\theta)(\nabla u + \nabla u^t)\right) = -\operatorname{div}\left(\nabla d \odot \nabla d\right),$	(1.3)
$\partial_t(\rho\theta) + \operatorname{div}(\rho\theta u) - \Delta\theta = 0,$	(1.4)
$\partial_t d + u \cdot \nabla d - \Delta d = d(1 - d ^2),$	(1.5)
$(\rho, u, \theta, d)(\cdot, 0) = (\rho_0, u_0, \theta_0, d_0)$ in \mathbb{R}^3 .	(1.6)

Here the unknowns ρ , u, π , θ , and d denote the density, velocity, pressure, temperature, and the macroscopic orientations, respectively. $\mu(\theta)$ is the viscosity, we will assume that μ is a smooth function and satisfies

$$0 < \frac{1}{C_1} \le \mu(\theta) \le C_1 < \infty \quad \text{when } |\theta| \le C_2 < \infty \tag{1.7}$$

http://dx.doi.org/10.1016/j.camwa.2016.10.006

0898-1221/ $\ensuremath{\mathbb{C}}$ 2016 Elsevier Ltd. All rights reserved.

Please cite this article in press as: W. Gu, et al., Regularity criteria for some simplified non-isothermal models for nematic liquid crystals, Computers and Mathematics with Applications (2016), http://dx.doi.org/10.1016/j.camwa.2016.10.006

ABSTRACT

This paper proves some regularity criteria for some simplified non-isothermal models for nematic liquid crystals.

© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, PR China. E-mail addresses: gwj@njfu.edu.cn (W. Gu), fanjishan@njfu.com.cn (J. Fan), yzhou@sufe.edu.cn (Y. Zhou).

2

ARTICLE IN PRESS

W. Gu et al. / Computers and Mathematics with Applications I (IIII) III-III

for some positive constants $C_1 > 1$ and $C_2 > 0$. The symbol $\nabla d \odot \nabla d$ denotes a matrix whose (i, j)th entry is $\partial_i d \partial_j d$. u^t is the transpose of u and $\partial_t u \equiv u_t$.

Next, we consider the following system: (1.1)-(1.4), (1.6) with

$$\partial_t d + u \cdot \nabla d - \Delta d = |\nabla d|^2 d, \quad |d| = 1.$$
(1.8)

When $\theta = 0$, the system reduces to the well-known density-dependent incompressible liquid crystal flow [2–6]. Wen and Ding [7] proved the existence of local strong solutions. Fan, Gao and Guo [8] obtained the regularity criterion. The first aim of this paper is to prove some new regularity criteria of the above system, we will prove

Theorem 1.1. Let $\nabla \rho_0 \in H^1 \cap W^{1,6}$, $u_0, \theta_0 \in H^2$, $d_0 \in H^3$ and $\frac{1}{C_1} \leq \rho_0 \leq C_1 < \infty$ and div $u_0 = 0$. Let (ρ, u, θ, d) be the unique local strong solution to the problem (1.1)–(1.6). If u satisfies

$$\int_{0}^{T} (\|u(t)\|_{L^{\infty}}^{2} + \|\nabla u(t)\|_{L^{\infty}}) dt < \infty$$
(1.9)

with $0 < T < \infty$, then the solution (ρ, u, θ, d) can be extended beyond T > 0.

Theorem 1.2. Let $\nabla \rho_0 \in H^1 \cap W^{1,6}$, $u_0, \theta_0, \nabla d_0 \in H^2$ and $\frac{1}{C_1} \leq \rho_0 \leq C_1$, div $u_0 = 0$, and $|d_0| = 1$. Let (ρ, u, θ, d) be the unique local strong solution to the problem (1.1)–(1.4), (1.6) and (1.8). If u satisfied (1.9) and

$$\nabla d \in L^2(0,T;\dot{B}^0_{\infty,\infty}) \tag{1.10}$$

with $0 < T < \infty$, then the solution (ρ, u, θ, d) can be extended beyond T > 0. Here $\dot{B}_{\infty,\infty}^0$ is the homogeneous Besov space.

Remark 1.1. The same regularity criterion (1.9) has been proved for the density-dependent MHD system [9,10].

When u = 0, the system (1.8) is the well-known harmonic heat flow.

Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary $\partial \Omega$, *n* be the outward unit normal to $\partial \Omega$. We consider the following 3D simplified nonisothermal liquid fluid flow

$$\partial_t u + u \cdot \nabla u + \nabla \pi - \operatorname{div}\left(\mu(\theta)(\nabla u + \nabla u^t)\right) = -\operatorname{div}\left(\nabla d \odot \nabla d\right),\tag{1.11}$$

$$div u = 0,$$

$$\partial_t \theta + u \cdot \nabla \theta - div (k(\theta) \nabla \theta) = 0,$$
(1.12)
(1.13)

$$\partial_t d + u \cdot \nabla d - \Delta d = d(1 - |d|^2) \quad \text{in } \Omega \times (0, \infty), \tag{1.14}$$

$$u = 0, \frac{\partial \theta}{\partial n} = 0, \frac{\partial d}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, \infty), \tag{1.15}$$

$$(u, \theta, d)(\cdot, 0) = (u_0, \theta_0, d_0) \quad \text{in } \Omega \subset \mathbb{R}^3.$$

$$(1.16)$$

k is the heat conductivity, we will assume that k is a smooth function and satisfies

$$\frac{1}{C_1} \le k(\theta) \le C_1 \quad \text{when } |\theta| \le C_2 \tag{1.17}$$

for some positive constants $C_1 > 1$ and $C_2 > 0$.

Finally, we consider the following system: (1.11)–(1.13), (1.15), (1.16) and (1.8).

When $\theta = 0$, the system reduces to the well-known incompressible liquid crystal flow [11–17]. When *d* is a unit constant vector, the system reduces to the well-known Boussinesq system, Fan, Li and Nakamura [18] show a blow-up criterion. The aim of this paper is to prove some new regularity criteria, we will prove

Theorem 1.3. Let $u_0 \in H_0^1 \cap H^2$, $\theta_0 \in H^2$, $d_0 \in H^3$ with div $u_0 = 0$ in Ω , $\frac{\partial \theta_0}{\partial n} = 0$, $\frac{\partial d_0}{\partial n} = 0$ on $\partial \Omega$. Let μ and k satisfy (1.7) and (1.17). Let (u, θ, d) be a local strong solution to the problem (1.11)–(1.16). If u satisfies

$$u \in L^{r}(0, T; L^{p})$$
 with $\frac{2}{r} + \frac{3}{p} = 1$ and $3 (1.18)$

with $0 < T < \infty$, then the solution (u, θ, d) can be extended beyond T > 0.

Theorem 1.4. Let $u_0 \in H_0^1 \cap H^2$, $\theta_0 \in H^2$, $d_0 \in H^3$ with div $u_0 = 0$, $|d_0| = 1$ in Ω , $\frac{\partial \theta_0}{\partial n} = 0$, $\frac{\partial d_0}{\partial n} = 0$ on $\partial \Omega$. Let μ and k satisfy (1.7) and (1.17). Let (u, θ, d) be a local strong solution to the problem (1.11)–(1.13), (1.15), (1.16) and (1.8). If u and ∇d satisfy (1.18) and

$$\nabla d \in L^{s}(0,T;L^{q}) \quad \text{with } \frac{2}{s} + \frac{3}{q} = 1 \text{ and } 3 < q \le \infty$$
 (1.19)

with $0 < T < \infty$, then the solution (u, θ, d) can be extended beyond T > 0.

Please cite this article in press as: W. Gu, et al., Regularity criteria for some simplified non-isothermal models for nematic liquid crystals, Computers and Mathematics with Applications (2016), http://dx.doi.org/10.1016/j.camwa.2016.10.006

Download English Version:

https://daneshyari.com/en/article/4958662

Download Persian Version:

https://daneshyari.com/article/4958662

Daneshyari.com