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a b s t r a c t

This paper describes iterative methods for the high frequency electromagnetic analysis
using the finite element method of Maxwell equations including displacement current.
The conjugate orthogonal conjugate gradient method has been widely used to solve a
complex symmetric system. However, the conventional method suffers from oscillating
convergence histories in large-scale analysis. In this paper, to solve large-scale complex
symmetric systems arising from the formulation of the E method, an iterative
substructuring method like the minimal residual method is presented, and the
performance of the convergence of the method is evaluated by numerical results. As the
result, the proposed method shows a stable convergence behavior and a fast convergence
rate compared to other iterative methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The electromagnetic field simulation in the range of severalmegahertz to several gigahertz has highdemand for industrial
and medical applications. The finite element method (FEM) with the formulation of the E method has been used to solve
the vector wave equations in high frequency electromagnetic problems. However, the iterative method for solving such
finite element equation is known for having bad convergence. By increasing problem size with increasingly complex shape,
the convergence is deteriorating further. Therefore, solving large-scale problems efficiently on the parallel computer is a
crucial issue, and both a robust convergence for increasing problem size and a scalable parallel efficiency is in great demand
[1–3]. For the high frequency electromagnetic field analysis, the finite element formulation of the E method yields a large-
scale complex symmetric linear system. To solve this systems, the conjugate orthogonal conjugate gradient (COCG) method
[4] with the shifted incomplete Cholesky preconditioning has been widely used. However, for the FEM with arbitrary and
complex unstructured mesh, the incomplete Cholesky preconditioner has difficulty obtaining the high performance of both
parallel efficiency and convergence. Although the multigrid method is well known as the fast iterative method, it faces the
difficult problem to solve a large-scale coarse problem in the large-scale analysis.

As an efficient parallel computing method for large-scale finite element analysis (FEA), we have been studying the
iterative substructuring method. The iterative substructuring method form is known as the domain decomposition method
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(DDM) based on the iterative method [5]. The DDM is expected to obtain scalable parallel efficiency on the distributed
memory parallel computers [6]. The DDM was applied to large-scale FEA of structural mechanics [7], heat transfer [8],
and nonlinear magnetostatic problems with the magnetic vector potential A as an unknown function [9–11]. Furthermore,
the DDM algorithm for the high frequency electromagnetic problems based on the formulation of the E method was
developed [12], and successfully solved a 100 million complex degrees of freedom problem [13,14]. The DDM is also
expected to get fast convergence by effective preconditioners such as the balancing domain decomposition (BDD) [15] and
the balancing domain decomposition based on constraints (BDDC) [16]. The finite element tearing and interconnecting (FETI)
method [17] and the dual-primal FETI (FETI-DP) method [18], which are the dual method of BDD and BDDC respectively, are
also well-known DDM algorithm. However, the iterative methods for the high frequency electromagnetic problems are not
fully established. Therefore, this paper focuses on the iterative methods for the DDM algorithm.

In the non-overlapping DDM, the whole analysis domain is decomposed into subdomains, and the problem to be solved
is also decomposed into subdomain-interior (subdomain) problems and a subdomain-interface (interface) problem. The
iterative substructuringmethod solves the interface problemusing the iterativemethodswith solving subdomain problems,
which means to perform FEA in each subdomain. In the high frequency electromagnetic field analysis with the finite
element formulation of the E method, the interface problem and the subdomain problems are also complex symmetric.
Hence, the COCG method can be used to solve the interface problem. However, since that formulation leads to the ill-
conditioned problem, the COCG method shows oscillating residual norm histories, and suffers from very slow convergence
in the large-scale analysis. On the other hand, the conjugate orthogonal conjugate residual (COCR) method, which extends
the conjugate residual method for Hermitian linear systems to complex symmetric linear systems, is expected to obtain
smoothed convergence behavior [19]. The iterative substructuring method based on the COCR method was applied to
the large-scale FEA of the high frequency electromagnetic fields and improved convergence compared with the COCG
method [20], however, its convergence behavior remains oscillating tendency.

In this paper, an iterative substructuringmethod based on aMINRES-like_CSmethod based on computational procedures
of the minimal residual (MINRES) method [21] is presented, and the performance of the convergence of the method is
evaluated by numerical results. The formulation of the high frequency electromagnetic problems is described in Section 2.
The iterative substructuring method with the iterative methods is discussed in Section 3. Section 4 shows some numerical
examples.

2. Finite element formulation

Vector wave equations. Let Ω be a domain with the boundary ∂Ω . The vector wave equations which describe an
electromagnetic field with single angular frequency ω are derived from Maxwell’s equations containing the displacement
current. The vector wave equations describing an electric field E are given by (1) and (2) using the current density J and the
electric field E , and assigning j as an imaginary unit
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− ω2εE = jωJ in Ω, (1)

E × n = 0 in ∂Ω, (2)

J = σ Ê. (3)

In (1) and hereafter, rot is the infinitesimal rotation of a 3-dimensional vector field, and described as follows.
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where E =

Ex, Ey, Ez


is a vector field and ex, ey, ez are the unit vector for the x, y, z axes. Permittivity and permeability

are given by ε = ε0εr and µ = µ0µr respectively, where ε0 denotes vacuum permittivity, εr relative permittivity, µ0
vacuum permeability, and µr relative permeability. In this formulation, the permittivity becomes complex permittivity
ε = ε0εr = ε0ε

′
r +σ/jω. The electric field Ê on known points is substituted into (1) by (3), where the electrical conductivity

is denoted as σ . By solving (1) with imposing the boundary condition of (2), we calculate the electric field E . The magnetic
fieldH is then calculated from the electric field E as post-processing using Faraday’s law of induction, which is expressed by

rotE − jωµH = 0. (5)

Finite element discretization. Next, we describe the finite element discretization. Let us decompose Ω into an union of
tetrahedra. Eh is an electric field approximated by the Nédélec elements [22,23], and Jh is an electric current density
approximated by the conventional piecewise linear tetrahedral elements. As a result, we have the finite element
approximation

Ω

rotEh ·
1
µ
rotE∗

hdv − ω2
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hdv = jω


Ω

Jh · E∗

hdv, (6)

where E∗

h × n = 0 on ∂Ω .
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